Wireless Machine-learning Enabled Reconfigurable ""Button-type"" Pressure Sensors for Gait Analysis

Description
This paper introduces a wireless reconfigurable “button-type” pressure sensor system, via machine learning, for gait analysis application. The pressure sensor system consists of an array of independent button-type pressure sensing units interfaced with a remote computer. The pressure sensing unit

This paper introduces a wireless reconfigurable “button-type” pressure sensor system, via machine learning, for gait analysis application. The pressure sensor system consists of an array of independent button-type pressure sensing units interfaced with a remote computer. The pressure sensing unit contains pressure-sensitive resistors, readout electronics, and a wireless Bluetooth module, which are assembled within footprint of 40 × 25 × 6mm3. The small-footprint, low-profile sensors are populated onto a shoe insole, like buttons, to collect temporal pressure data. The pressure sensing unit measures pressures up to 2,000 kPa while maintaining an error under 10%. The reconfigurable pressure sensor array reduces the total power consumption of the system by 50%, allowing extended period of operation, up to 82.5 hrs. A robust machine learning program identifies the optimal pressure sensing units in any given configuration at an accuracy of up to 98%.

Downloads

One or more components are restricted to ASU affiliates. Please sign in to view the rest.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Contributors
Date Created
2018-12
Embargo Release Date
Language
  • eng
Additional Information
English
Series
  • Academic Year 2018-2019
Extent
  • 11 pages