An Assessment of the Performance of Machine Learning Techniques When Applied to Trajectory Optimization

Description
Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in

Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming method of producing the magnitude of delta-v vectors required to abort from various points along a Near Rectilinear Halo Orbit. Although the utility of the study is limited, the accuracy of the delta-v predictions made by a Gaussian regression model is fairly accurate after a relatively swift computation time, paving the way for more concentrated studies of this nature in the future.

Downloads

One or more components are restricted to ASU affiliates. Please sign in to view the rest.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Contributors
Date Created
2018-05
Resource Type
Language
  • eng
Additional Information
English
Series
  • Academic Year 2017-2018
Extent
  • 23 pages