Predicting Patient No-Shows With the Added Factor of Telemedicine

Description

In the following paper, I aim to form relationships between different patient factors and no-show rates. The culmination of these relationships will then be used in a logistic regression model. Data collected from a survey at 26 HonorHealth clinics were

In the following paper, I aim to form relationships between different patient factors and no-show rates. The culmination of these relationships will then be used in a logistic regression model. Data collected from a survey at 26 HonorHealth clinics were analyzed using odds ratios and relative risk methods. Of 310,307 visits collected, 22,280 of them were no shows (7.2%), an 11% decrease from national averages (18.8%). This fueled the study, along with a grant filed by HonorHealth looking at the impact of telehealth on the working poor. A binary logistic regression method was run over the data, and less than 1% of patients' no-shows were predicted correctly. By adding factors, and improving the diversity in the data collected, model accuracy can be improved.

Downloads

One or more components are restricted to ASU affiliates. Please sign in to view the rest.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Contributors
Date Created
2022-05
Additional Information
English
Series
  • Academic Year 2021-2022
Open Access
Peer-reviewed