Quantum Machine Learning for Audio Classification with Applications to Healthcare

Description

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically on COVID-19 cough sound classification. All machine learning algorithms developed or implemented in this study were trained using features from Log Mel Spectrograms of healthy and COVID-19 coughing audio. Results are first presented from a study in which an ensemble of a VGG13, CRNN, GCNN, and GCRNN are utilized to classify audio using classical computing. Then, improved results attained using an optimized VGG13 neural network are presented. Finally, our quantum-classical hybrid neural network is designed and assessed in terms of accuracy and number of quantum layers and qubits. Comparisons are made to classical recurrent and convolutional neural networks.

Downloads

One or more components are restricted to ASU affiliates. Please sign in to view the rest.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Contributors
Date Created
2022-05
Embargo Release Date
Resource Type
Additional Information
English
Series
  • Academic Year 2021-2022
Open Access
Peer-reviewed