Matching Items (2)
Filtering by

Clear all filters

Description

The recent discoveries of 2D van der Waals (vdW) materials have led to the realization of 2D magnetic crystals. Previously debated and thought impossible, transition metal halides (TMH) have given rise to layer dependent magnetism. Using these TMH as a basis, an alloy composing of Fe1-xNixCl2 (where 0 ≤ x

The recent discoveries of 2D van der Waals (vdW) materials have led to the realization of 2D magnetic crystals. Previously debated and thought impossible, transition metal halides (TMH) have given rise to layer dependent magnetism. Using these TMH as a basis, an alloy composing of Fe1-xNixCl2 (where 0 ≤ x ≤ 1) was grown using chemical vapor transport. The intrigue for this alloy composition stems from the interest in spin canting and magnet moment behavior since NiCl2 has in-plane ferromagnetism whereas FeCl2 has out-of-plane ferromagnetism. While in its infancy, this project lays out a foundation to fully develop and characterize this TMH via cationic alloying. To study the magnetic properties of this alloy system, Vibrating Sample Magnetometry was employed extensively to measure the magnetism as a function of temperature as well as applied magnetic field. Future work with use a combination of X-Ray Diffraction, Raman, Scanning Electron Microscopy, and Energy-Dispersive X-Ray Spectroscopy Mapping to verify homogeneous alloying rather than phase separation. Additionally, ellipsometry will be used with Kramer-Kronig relations to extract the dielectric constant from Fe1-xNixCl2. This work lays the foundation for future, fruitful work to prepare this vdW cationic alloy for eventual device applications.

ContributorsPovilus, Blake (Author) / Tongay, Sefaattin (Thesis director) / Yang, Sui (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2022-05
Description
Transition metal dichalcogenides (TMDs) are a family of layered crystals with the chemical formula MX2 (M = W, Nb, Mo, Ta and X = S, Se, Te). These TMDs exhibit many fascinating optical and electronic properties making them strong candidates for high-end electronics, optoelectronic application, and spintronics. The layered structure

Transition metal dichalcogenides (TMDs) are a family of layered crystals with the chemical formula MX2 (M = W, Nb, Mo, Ta and X = S, Se, Te). These TMDs exhibit many fascinating optical and electronic properties making them strong candidates for high-end electronics, optoelectronic application, and spintronics. The layered structure of TMDs allows the crystal to be mechanically exfoliated to a monolayer limit, where bulk-scale properties no longer apply and quantum effects arise, including an indirect-to-direct bandgap transition. Controllably tuning the electronic properties of TMDs like WSe2 is therefore a highly attractive prospect achieved by substitutionally doping the metal atoms to enable n- and p-type doping at various concentrations, which can ultimately lead to more effective electronic devices due to increased charge carriers, faster transmission times and possibly new electronic and optical properties to be probed. WSe2 is expected to exhibit the largest spin splitting size and spin-orbit coupling, which leads to exciting potential applications in spintronics over its similar TMD counterparts, which can be controlled through electrical doping. Unfortunately, the well-established doping technique of ion implantation is unable to preserve the crystal quality leading to a major roadblock for the electronics applications of tungsten diselenide. Synthesizing WSe2 via chemical vapor transport (CVT) and flux method have been previously established, but controllable p-type (niobium) doping WSe2 in low concentrations ranges (<1 at %) by CVT methods requires further experimentation and study. This work studies the chemical vapor transport synthesis of doped-TMD W1-xNbxSe2 through characterization techniques of X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and X-ray Photoelectron Spectroscopy techniques. In this work, it is observed that excess selenium transport does not enhance the controllability of niobium doping in WSe2, and that tellurium tetrachloride (TeCl4) transport has several barriers in successfully incorporating niobium into WSe2.
ContributorsRuddick, Hayley (Author) / Tongay, Sefaattin (Thesis director) / Jiao, Yang (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2024-05