Filtering by
- All Subjects: Sustainability
- Creators: Arizona State University
- Creators: Chemical Engineering Program
Plastic consumption has reached astronomical amounts. The issue is the single-use plastics that continue to harm the environment, degrading into microplastics that find their way into our environment. Finding sustainable, reliable, and safe methods to break down plastics is a complex but valuable endeavor. This research aims to assess the viability of using biochar as a catalyst to break down polyethylene terephthalate (PET) plastics under hydrothermal liquefaction conditions. PET is most commonly found in single-use plastic water bottles. Using glycolysis as the reaction, biochar is added and assessed based on yield and time duration of the reaction. This research suggests that temperatures of 300℃ and relatively short experimental times were enough to see the complete conversion of PET through glycolysis. Further research is necessary to determine the effectiveness of biochar as a catalyst and the potential of process industrialization to begin reducing plastic overflow.
The purpose of this thesis was to understand the importance of supply chain visibility (SCV) and to provide an analysis of the technology available for achieving SCV. Historical events where companies lacked efficient SCV were assessed to understand how errors in the supply chain can have detrimental effects on a company and their reputation. Environmental, social, and governance standards within the supply chain were defined along with the importance of meeting the legal and consumer expectations of a supply chain. There are many different organizations dedicated to helping companies meet ESG standards to achieve ethical, sustainable supply chains. Examples such as the Responsible Business Association and the Organization for Economic Co-Operation and Development were considered. A government solution to SCV, called the Freight Logistics Optimization Works Initiative, considered the importance of data sharing for large companies with complex supply chains, and this solution was assessed for understanding. Current companies and technologies available to achieve SCV were examined for understanding as to how the issue of SCV is currently addressed in the industry. A case study on the company Moses Lake Industries looked at how their complicated chemical manufacturing supply chain has adapted to achieve SCV. This included understanding supplier location, manufacturing processes, and risks. Future technologies that are currently being developed which could further benefit the supply chain industry were considered. Other future considerations, such as the movement of manufacturing out of high risk areas and the need for centralization of SCV solution, were also discussed.
In 2019, the World Health Organization stated that climate change and air pollution is the greatest growing threat to humanity. With a world population of close to 8 billion people, the rate of population growth continues to increase nearly 1.05% each year. As the world population grows, carbon dioxide emissions and climate change continue to accelerate. By observing increasing concentrations of greenhouse gas emissions in the atmosphere, scientists have correlated that the Earth’s temperature is increasing at an average rate of 0.13 degrees Fahrenheit each decade. In an effort to mitigate and slow climate change engineers across the globe have been eagerly seeking solutions to fight this problem. A new form of carbon dioxide mitigation technology that has begun to gain traction in the last decade is known as direct air capture (DAC). Direct air capture works by removing excess atmospheric carbon dioxide from the air and repurposing it. The major challenge faced with DAC is not capturing the carbon dioxide but finding a useful way to reuse the post-capture carbon dioxide. As part of my undergraduate requirements, I was tasked to address this issue and create my own unique design for a DAC system. The design was to have three major goals: be 100% self-sufficient, have net zero carbon emissions, and successfully repurpose excess carbon dioxide into a sustainable and viable product. Arizona was chosen for the location of the system due to the large availability of sunlight. Additionally, the design was to utilize a protein rich hydrogen oxidizing bacteria (HOB) known as Cupriavidus Necator. By attaching a bioreactor to the DAC system, excess carbon dioxide will be directly converted into a dense protein biomass that will be used as food supplements. In addition, my system was designed to produce 1 ton (roughly 907.185 kg) of protein in a year. Lastly, by utilizing solar energy and an atmospheric water generator, the system will produce its own water and achieve the goal of being 100% self-sufficient.
Chemistry has always played a foundational role in the synthesis of pharmaceuticals. With the rapid growth of the global population, the health and medical needs have also rapidly increased. In order to provide drugs capable of mediating symptoms and curing diseases, organic chemistry provides drug derivatives utilizing a limited number of chemical building blocks and privileged structures. Of these limited building blocks, this project explores Late–stage C–H functionalization of (iso)quinolines using abundant metal catalysis in order to achieve site-selective molecular modification.
Climate change is one of the most pressing issues of the generation. Both faith organizations and scientific research are striving to solve problems related to climate change. Both show significant motivations to act on the effects that global warming is predicted to have. Combining the motivations and finding common ground could be the key to changing the fundamental issues that lead to climate change and both sides need each other to carry out the goal of preventing climate change. Some potential outcomes of cooperation are explored and the impact that these measures could have are described. These effects will be synthesized from previous research on the subjects, compiling qualitative data on the motivations and effects of both religion and science on climate change.
Ammonia is one of the most critical chemical commodities produced and is integral to a number of current industries such as agriculture as well as a key part to future sustainability areas such as clean H2 production. However, the current production methods for ammonia are largely unsustainable and produce large amounts of CO2 emissions. This combined with the current dependence on fossil energy for production has led to researchers attempting to develop a clean and sustainable method for ammonia production. This method involves the thermochemical looping of a nitride compound with H2, and the renitridation of the compound with N2. This thermochemical loop would significantly reduce pressure requirements for ammonia production in addition to only being reliant on renewable inputs. This paper expands and complements this research by detailing the methods for the synthesis of nitride compounds as well as confirming their structure through material characterization. The nitride compounds as well as their oxide precursors were synthesized through Pechini synthesis and co-precipitation, and their structure was confirmed through the use of X-ray diffraction analysis. The XRD patterns of the synthesized nitrides matched those previously synthesized as well as those found in literature. In addition, observation of the spectra for the oxide CoMoO4 showed a marked similarity to that of the oxide precursor for (NixCox)2Mo3N. However, further testing is necessary regarding the phase-purity of synthesized nitrides, as well as the reduction and renitridation capability of nitrides in the line of (NixCox)2Mo3N.