Matching Items (17)
Filtering by

Clear all filters

Description

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.

ContributorsRote, Jennifer Ashley (Co-author) / Goodall, Melody (Co-author) / Lozano Porras, Mariela (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to develop a solution that can solve the problem. Working with InnovationSpace and people in industry, interviews were conducted in order to determine the best course of action to address the need of the sponsor, The Sustainability Consortium. After extensive research and interviews, it was determined that implementing a new MRF attachment to circulate small format back to the main residual stream would be the best course of action. This attachment would be modular for a MRF and could be implemented in order to gather more material while also producing higher quality recycled goods. This has major implications for the recycling industry and could help in making recycling profitable once again.

ContributorsSullivan, Neal (Author) / Kuhn, Anthony (Thesis director) / Heller, Cheryl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This honors thesis proposes a sustainable solution for providing off-grid solar energy to rural communities lacking grid energy infrastructure. The proposed design emphasizes sustainability, low cost, reliability, and ease of maintenance and manufacturing. The report compares pre-built solar systems currently available for purchase with the proposed design. The project includes

This honors thesis proposes a sustainable solution for providing off-grid solar energy to rural communities lacking grid energy infrastructure. The proposed design emphasizes sustainability, low cost, reliability, and ease of maintenance and manufacturing. The report compares pre-built solar systems currently available for purchase with the proposed design. The project includes a user manual draft to ensure long-term sustainability and troubleshooting. Additionally, there is a detailed engineering design for a battery storage solution, electrical component design, and solar panel mounting system. A rural community in northern Arizona serves as an example for the project completed in collaboration with ASU's EPICS program and EWB Chapter. The project is ongoing, with future work to optimize and improve the proposed system design.

ContributorsBeltran Ruelas, Salvador (Author) / Montano Sosa, Jorge (Co-author) / Haq, Emmen (Co-author) / Pham, Brandon (Co-author) / Schoepf, Jared (Thesis director) / Wong, Marnie (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper

Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper sourced from hemp & agricultural waste. Agrix Paper will reinvent the papermaking process for a more sustainable industry future.

ContributorsBarraza-Córdova, Erik (Author) / Byrum, Emily (Co-author) / DiFernando, Anthony (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
This thesis analyzed Canon GPR-30 Black Standard Yield Toner in hopes to gain better understanding of the additives and plastic used in a popular photocopier toner formulation. By analyzing the toner’s composition from the perspective of its recyclability and potential to be manufactured using recycled plastic, this thesis hoped to

This thesis analyzed Canon GPR-30 Black Standard Yield Toner in hopes to gain better understanding of the additives and plastic used in a popular photocopier toner formulation. By analyzing the toner’s composition from the perspective of its recyclability and potential to be manufactured using recycled plastic, this thesis hoped to fill a gap in current literature regarding how toner fits into a circular economy. While the analysis of the selected toner was ultimately inconclusive, three hypotheses about the toner’s composition are put forth based upon data from differential scanning calorimetry (DSC), solubility analysis, and Fourier Transform Infrared (FTIR) spectroscopy experimentation. It is hypothesized that the toner is most likely composed of either polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET). Both of these polymers have characteristic FTIR peaks that were exhibited in the toner spectra and both polymers exhibit similar solubility behavior to toner samples. However, the glass transition temperature and melting temperature of the toner sampled were 58℃ and 74.5℃ respectively, both of which are much lower than that of PMMA and PET. Thus, a third hypothesis that would better support DSC findings is that the toner is primarily composed of nylon 6,6. While DSC data best matches this polymer, FTIR data seems to rule out nylon 6,6 as an option because its characteristic peaks were not found in experimental data. Thus, the Canon GPR-30 Black Standard Yield Toner is probably made from either PMMA or PET. Both PMMA and PET are 100% recyclable plastics which are commonly repurposed at recycling facilities, however, unknowns regarding toner additives make it difficult to determine how this toner would be recycled. If the printing industry hopes to move towards a circular economy in which plastic can be recycled to use towards toner manufacturing and toner can be “unprinted” from paper to be recycled into new toner, it is likely that monetary incentives or government regulations will need to be introduced to promote the sharing of toner formulations for recycling purposes.
ContributorsChase, Jasmine (Author) / Green, Matthew (Thesis director) / Emady, Heather (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We designed the Eco-Bead with 3D CAD modeling and produced it through a process called plastic injection molding which is explained in detail in the final paper. Kandi Society instilled a positive impact on ASU students by igniting a sustainability spark and increasing interest in repurposing materials in the future.

ContributorsConnolly, Payton (Author) / Guebara, Chloe (Co-author) / Grundhoffer, Andie (Co-author) / Maxwell, Olivia (Co-author) / Bia, Aleya (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We designed the Eco-Bead with 3D CAD modeling and produced it through a process called plastic injection molding which is explained in detail in the final paper. Kandi Society instilled a positive impact on ASU students by igniting a sustainability spark and increasing interest in repurposing materials in the future.

ContributorsGuebara, Chloe (Author) / Connolly, Payton (Co-author) / Maxwell, Olivia (Co-author) / Bia, Aleya (Co-author) / Grundhoffer, Andie (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Binch, Bill (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This honors thesis proposes a sustainable solution for providing off-grid solar energy to rural communities lacking grid energy infrastructure. The proposed design emphasizes sustainability, low cost, reliability, and ease of maintenance and manufacturing. The report compares pre-built solar systems currently available for purchase with the proposed design. The project includes

This honors thesis proposes a sustainable solution for providing off-grid solar energy to rural communities lacking grid energy infrastructure. The proposed design emphasizes sustainability, low cost, reliability, and ease of maintenance and manufacturing. The report compares pre-built solar systems currently available for purchase with the proposed design. The project includes a user manual draft to ensure long-term sustainability and troubleshooting. Additionally, there is a detailed engineering design for a battery storage solution, electrical component design, and solar panel mounting system. A rural community in northern Arizona serves as an example for the project completed in collaboration with ASU's EPICS program and EWB Chapter. The project is ongoing, with future work to optimize and improve the proposed system design.

ContributorsMontano Sosa, Jorge (Author) / Haq, Emmen (Co-author) / Beltran, Salvador (Co-author) / Pham, Brandon (Co-author) / Schoepf, Jared (Thesis director) / Wong, Marnie (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2023-05
Description

Dr. Ivan Ermanoski has been working towards creating a thermochemical reactor for the purposes of hydrogen production for several years. After testing the initial design, there were found to be several areas in which possible improvements could be made. It is the purpose of this thesis project to look over

Dr. Ivan Ermanoski has been working towards creating a thermochemical reactor for the purposes of hydrogen production for several years. After testing the initial design, there were found to be several areas in which possible improvements could be made. It is the purpose of this thesis project to look over the shortcomings of the previous reactor design and make improvements. The primary focus of these improvements centers around increasing the heat retention of the reactor, with a secondary focus on improving the workability and ease of construction for the reactor.

ContributorsWehe, Alexander (Author) / Ermanoski, Ivan (Thesis director) / Miller, James (Committee member) / Stechel, Ellen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05