Filtering by
- All Subjects: Sustainability
- Creators: Chemical Engineering Program
This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.
Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to develop a solution that can solve the problem. Working with InnovationSpace and people in industry, interviews were conducted in order to determine the best course of action to address the need of the sponsor, The Sustainability Consortium. After extensive research and interviews, it was determined that implementing a new MRF attachment to circulate small format back to the main residual stream would be the best course of action. This attachment would be modular for a MRF and could be implemented in order to gather more material while also producing higher quality recycled goods. This has major implications for the recycling industry and could help in making recycling profitable once again.
This honors thesis proposes a sustainable solution for providing off-grid solar energy to rural communities lacking grid energy infrastructure. The proposed design emphasizes sustainability, low cost, reliability, and ease of maintenance and manufacturing. The report compares pre-built solar systems currently available for purchase with the proposed design. The project includes a user manual draft to ensure long-term sustainability and troubleshooting. Additionally, there is a detailed engineering design for a battery storage solution, electrical component design, and solar panel mounting system. A rural community in northern Arizona serves as an example for the project completed in collaboration with ASU's EPICS program and EWB Chapter. The project is ongoing, with future work to optimize and improve the proposed system design.
Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper sourced from hemp & agricultural waste. Agrix Paper will reinvent the papermaking process for a more sustainable industry future.
Plastic consumption has reached astronomical amounts. The issue is the single-use plastics that continue to harm the environment, degrading into microplastics that find their way into our environment. Finding sustainable, reliable, and safe methods to break down plastics is a complex but valuable endeavor. This research aims to assess the viability of using biochar as a catalyst to break down polyethylene terephthalate (PET) plastics under hydrothermal liquefaction conditions. PET is most commonly found in single-use plastic water bottles. Using glycolysis as the reaction, biochar is added and assessed based on yield and time duration of the reaction. This research suggests that temperatures of 300℃ and relatively short experimental times were enough to see the complete conversion of PET through glycolysis. Further research is necessary to determine the effectiveness of biochar as a catalyst and the potential of process industrialization to begin reducing plastic overflow.
The purpose of this thesis was to understand the importance of supply chain visibility (SCV) and to provide an analysis of the technology available for achieving SCV. Historical events where companies lacked efficient SCV were assessed to understand how errors in the supply chain can have detrimental effects on a company and their reputation. Environmental, social, and governance standards within the supply chain were defined along with the importance of meeting the legal and consumer expectations of a supply chain. There are many different organizations dedicated to helping companies meet ESG standards to achieve ethical, sustainable supply chains. Examples such as the Responsible Business Association and the Organization for Economic Co-Operation and Development were considered. A government solution to SCV, called the Freight Logistics Optimization Works Initiative, considered the importance of data sharing for large companies with complex supply chains, and this solution was assessed for understanding. Current companies and technologies available to achieve SCV were examined for understanding as to how the issue of SCV is currently addressed in the industry. A case study on the company Moses Lake Industries looked at how their complicated chemical manufacturing supply chain has adapted to achieve SCV. This included understanding supplier location, manufacturing processes, and risks. Future technologies that are currently being developed which could further benefit the supply chain industry were considered. Other future considerations, such as the movement of manufacturing out of high risk areas and the need for centralization of SCV solution, were also discussed.