Matching Items (19)
Filtering by

Clear all filters

Description

In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen

In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen the environmental impact of generating more paperboard materials, and move towards a more ethical circular economy. In efforts to adopt the principles of a green economy, deviate from the linear supply chain model, minimize packaging waste, and encourage more sustainable lifestyles, we developed a business centered around a circular, service based model called Room & Cardboard. Our initiative collects cardboard waste generated in and around the ASU community and repurposes it for dorm-style furniture available for students to rent throughout the school year. Using cardboard, we have built prototypes for two products (desk lamps and shoe racks) that are sturdy, visually pleasing, and recyclable. Our initiative helps to reduce cardboard packaging waste by upcycling cardboard waste into products that will increase the lifespan of the cardboard material. At the end of the product’s life span, in cases of severe damage, we will turn the product into a seed board made with blended cardboard paste that can then be used to plant a succulent we will make available to students to buy as dorm decor. The feedback on our initiative through online surveys and in-person tabling has generated enough traction for Dean Rendell of Barrett, the Honors College at Arizona State University to consider a test-drive of our products in the upcoming Fall semester.

ContributorsWerner, Isabella (Co-author) / Islam, Shauda (Co-author) / Norvell, Macey (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
As record heatwaves are being seen across the globe, new tools are needed to support urban planners when considering infrastructure additions. This project focuses on developing an interactive web interface that evaluates the effectiveness of various shade structures based on certain parameters. The interface requests user input for location, date,

As record heatwaves are being seen across the globe, new tools are needed to support urban planners when considering infrastructure additions. This project focuses on developing an interactive web interface that evaluates the effectiveness of various shade structures based on certain parameters. The interface requests user input for location, date, and shade type, then returns information on sun position, weather data, and hourly mean radiant temperature (MRT). This tool will allow urban city planners to create more efficient and effective shade structures to meet the public’s needs.
ContributorsMuir, Maya (Author) / Maciejewski, Ross (Thesis director) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

Creation of a biodegradable phone case business, "Green Halo Cases".

ContributorsRakolta, Mikayla (Author) / Curtin, Erika (Co-author) / Pollard, Oscar (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We designed the Eco-Bead with 3D CAD modeling and produced it through a process called plastic injection molding which is explained in detail in the final paper. Kandi Society instilled a positive impact on ASU students by igniting a sustainability spark and increasing interest in repurposing materials in the future.

ContributorsBia, Aleya (Author) / Grundoffer, Andie (Co-author) / Maxwell, Olivia (Co-author) / Guebara, Chloe (Co-author) / Connolly, Payton (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

The purpose of this thesis is to contextualise Hindsight, a sustainability-focused historically based city-simulation and resource management game built by the author. The game and game engine were coded from scratch using the C# programming language and the Unity game development suite of tools. The game focuses on the management

The purpose of this thesis is to contextualise Hindsight, a sustainability-focused historically based city-simulation and resource management game built by the author. The game and game engine were coded from scratch using the C# programming language and the Unity game development suite of tools. The game focuses on the management of the city of London in two time periods, London from 1850 and the other set in 2050. Both versions of the city are divided into 21 zones, each of which can be managed by the player through the construction, upgrading, or destruction of various buildings within the zone. The player must manage both the city’s resources and the resources of the environment upon which the city depends in order to bring about a more sustainable future and bring the 2050-era version of the city back from the brink of environmental devastation. Along the way, the player must address the cultural views of the society they are managing to ensure their reforms will be accepted and can also see those views slowly change over time. The goal of the game is to provide an interactive learning experience for both the historical element of London and the importance of making sustainable choices.

ContributorsMeling, Kristian (Author) / Jakubczak, Laura (Thesis director) / Selgrad, Justin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2023-05
Description
Music festivals are a vibrant celebration of art, culture, and community, attracting global audiences and creating memorable experiences. However, the environmental footprint associated with these events from waste production, energy consumption, transportation, and water usage, poses significant sustainability challenges. This thesis proposes the development of a sustainable festival event management

Music festivals are a vibrant celebration of art, culture, and community, attracting global audiences and creating memorable experiences. However, the environmental footprint associated with these events from waste production, energy consumption, transportation, and water usage, poses significant sustainability challenges. This thesis proposes the development of a sustainable festival event management software designed to enhance and support sustainability practices at music festivals. The software enables real-time monitoring and analysis of key environmental strategies in waste management, energy use, transportation modes, and water management, assisting organizers in making informed decisions towards reducing ecological impacts. The research encompasses a detailed review of existing sustainable practices in the festival industry, identification of critical monitoring areas, and the integration of relevant algorithms for data analysis within the software. By facilitating better management through technology, this software aims to set a new standard for eco-friendly festival operations, promoting a balance between operational needs and environmental mindfulness.
ContributorsGulaya, Ashwin (Author) / Kuhn, Anthony (Thesis director) / Hedges, Craig (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials

It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials for this study. Sodium sulfate and calcium oxide were used as activators. In Part 1 of this study, focus was placed on high volume replacement of OPC using sodium sulfate as the activator. Despite improvements in heat generation for both CFA and FFA systems in the presence of sulfate, sodium sulfate was found to have adverse effects on the compressive strength of CFA mortars. In the CFA mixes, strength improved significantly with sulfate addition, but began to decrease in strength around 14 days due to expansive ettringite formation. Conversely, the addition of sulfate led to improved strength for FFA mixes such that the 28 day strength was comparable to that of the CFA mixes with no observable strength loss. Maximum compressive strengths achieved for the high volume replacement mixes was around 40 MPa, which is considerably lower than the baseline OPC mix used for comparison. In Part 2 of the study, temperature dependency and calcium oxide addition were studied for sodium sulfate activated systems composed of 100% Class F fly ash. In the presence of sulfate, added calcium increased reactivity and compressive strength at early ages, particularly at elevated temperatures. It is believed that sulfate and calcium react with alumina from fly ash to form ettringite, while heat overcomes the activation energy barrier of fly ash. The greatest strengths were obtained for mixes containing the maximum allowed quantity of calcium oxide (5%) and sodium sulfate (3%), and were around 12 MPa. This is a very low compressive strength relative to OPC and would therefore be an inadequate substitute for OPC needs.
Created2014-05
Description
With the development of technology, there has been a dramatic increase in the number of machine learning programs. These complex programs make conclusions and can predict or perform actions based off of models from previous runs or input information. However, such programs require the storing of a very large amount

With the development of technology, there has been a dramatic increase in the number of machine learning programs. These complex programs make conclusions and can predict or perform actions based off of models from previous runs or input information. However, such programs require the storing of a very large amount of data. Queries allow users to extract only the information that helps for their investigation. The purpose of this thesis was to create a system with two important components, querying and visualization. Metadata was stored in Sedna as XML and time series data was stored in OpenTSDB as JSON. In order to connect the two databases, the time series ID was stored as a metric in the XML metadata. Queries should be simple, flexible, and return all data that fits the query parameters. The query language used was an extension of XQuery FLWOR that added time series parameters. Visualization should be easily understood and be organized in a way to easily find important information and details. Because of the possibility of a large amount of data being returned from a query, a multivariate heat map was used to visualize the time series results. The two programs that the system performed queries on was Energy Plus and Epidemic Simulation Data Management System. By creating such a system, it would be easier for people of the project's fields to find the relationship between metadata that leads to the desired results over time. Over the time of the thesis project, the overall software was completed, however the software must be optimized in order to take the enormous amount of data expected from the system.
ContributorsTse, Adam Yusof (Author) / Candan, Selcuk (Thesis director) / Chen, Xilun (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
Description
This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize lightweight geopolymer matrices from fly ash through carbonate-based activation. Sodium carbonate (Na2CO3) was used in this study to produce controlled pores through the release of CO2 during the low-temperature decomposition of Na2CO3. Stage 3 focuses on 3D printing of binders using geopolymeric binders along with several OPC-based 3D printable binders. In Stage 4, synthesis and characterization of 3D-printable foamed fly ash-based geopolymer matrices for thermal insulation is the focus. A surfactant-based foaming process, multi-step mixing that ensures foam jamming transition and thus a dry foam, and microstructural packing to ensure adequate skeletal density are implemented to develop foamed suspensions amenable to 3D-printing. The last stage of this research develops 3D-printable alkali-activated ground granulated blast furnace slag mixture. Slag is used as the source of aluminosilicate and shows excellent mechanical properties when activated by highly alkaline activator (NaOH + sodium silicate solution). However, alkali activated slag sets and hardens rapidly which is undesirable for 3D printing. Thus, a novel mixing procedure is developed to significantly extend the setting time of slag activated with an alkaline activator to suit 3D printing applications without the use of any retarding admixtures. This dissertation, thus advances the field of sustainable and 3D-printable matrices and opens up a new avenue for faster and economical construction using specialized materials.
ContributorsAlghamdi, Hussam Suhail G (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Abbaszadegan, Morteza (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2019