Filtering by
- All Subjects: Sustainability
In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen the environmental impact of generating more paperboard materials, and move towards a more ethical circular economy. In efforts to adopt the principles of a green economy, deviate from the linear supply chain model, minimize packaging waste, and encourage more sustainable lifestyles, we developed a business centered around a circular, service based model called Room & Cardboard. Our initiative collects cardboard waste generated in and around the ASU community and repurposes it for dorm-style furniture available for students to rent throughout the school year. Using cardboard, we have built prototypes for two products (desk lamps and shoe racks) that are sturdy, visually pleasing, and recyclable. Our initiative helps to reduce cardboard packaging waste by upcycling cardboard waste into products that will increase the lifespan of the cardboard material. At the end of the product’s life span, in cases of severe damage, we will turn the product into a seed board made with blended cardboard paste that can then be used to plant a succulent we will make available to students to buy as dorm decor. The feedback on our initiative through online surveys and in-person tabling has generated enough traction for Dean Rendell of Barrett, the Honors College at Arizona State University to consider a test-drive of our products in the upcoming Fall semester.
Creation of a biodegradable phone case business, "Green Halo Cases".
For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We designed the Eco-Bead with 3D CAD modeling and produced it through a process called plastic injection molding which is explained in detail in the final paper. Kandi Society instilled a positive impact on ASU students by igniting a sustainability spark and increasing interest in repurposing materials in the future.
The purpose of this thesis is to contextualise Hindsight, a sustainability-focused historically based city-simulation and resource management game built by the author. The game and game engine were coded from scratch using the C# programming language and the Unity game development suite of tools. The game focuses on the management of the city of London in two time periods, London from 1850 and the other set in 2050. Both versions of the city are divided into 21 zones, each of which can be managed by the player through the construction, upgrading, or destruction of various buildings within the zone. The player must manage both the city’s resources and the resources of the environment upon which the city depends in order to bring about a more sustainable future and bring the 2050-era version of the city back from the brink of environmental devastation. Along the way, the player must address the cultural views of the society they are managing to ensure their reforms will be accepted and can also see those views slowly change over time. The goal of the game is to provide an interactive learning experience for both the historical element of London and the importance of making sustainable choices.

solutions has increased over the years which has led to the rapid expansion of global
markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest
amongst these technologies is the Bifacial PV modules, which harvests incident radiation
from both sides of the module. The overall power generation can be significantly increased
by using these bifacial modules. The purpose of this research is to investigate and maximize
the effect of back reflectors, designed to increase the efficiency of the module by utilizing
the intercell light passing through the module to increase the incident irradiance, on the
energy output using different profiles placed at varied distances from the plane of the array
(POA). The optimum reflector profile and displacement of the reflector from the module
are determined experimentally.
Theoretically, a 60-cell bifacial module can produce 26% additional energy in
comparison to a 48-cell bifacial module due to the 12 excess cells found in the 60-cell
module. It was determined that bifacial modules have the capacity to produce additional
energy when optimized back reflectors are utilized. The inverted U reflector produced
higher energy gain when placed at farther distances from the module, indicating direct
dependent proportionality between the placement distance of the reflector from the module
and the output energy gain. It performed the best out of all current construction geometries
with reflective coatings, generating more than half of the additional energy produced by a
densely-spaced 60-cell benchmark module compared to a sparsely-spaced 48-cell reference
module.ii
A gain of 11 and 14% was recorded on cloudy and sunny days respectively for the
inverted U reflector. This implies a reduction in the additional cells of the 60-cell module
by 50% can produce the same amount of energy of the 60-cell module by a 48-cell module
with an inverted U reflector. The use of the back reflectors does not only affect the
additional energy gain but structural and land costs. Row to row spacing for bifacial
systems(arrays) is reduced nearly by half as the ground height clearance is largely
minimized, thus almost 50% of height constraints for mounting bifacial modules, using
back reflectors resulting in reduced structural costs for mounting of bifacial modules
