Filtering by
- All Subjects: Education
- Creators: Computer Science and Engineering Program
Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools are performing at a legislative district level. While there are sources of information released at a school district level, many of these are limited and can become obscure to legislators when such school districts lie on the boundary between 2 different legislative districts. Moreover, much of this information is in the form of raw spreadsheets and is often fragmented between government websites and educational organizations. As such, a visualization dashboard that clearly identifies schools and their relative performance within each legislative district would be an extremely valuable tool to legislative bodies and the Arizona public. Although this dashboard and research are rough drafts of a larger concept, they would ideally increase transparency regarding public information about these districts and allow legislators to utilize the dashboard as a tool for greater understanding and more effective policymaking.
Machine learning is a rapidly growing field, with no doubt in part due to its countless applications to other fields, including pedagogy and the creation of computer-aided tutoring systems. To extend the functionality of FACT, an automated teaching assistant, we want to predict, using metadata produced by student activity, whether a student is capable of fixing their own mistakes. Logs were collected from previous FACT trials with middle school math teachers and students. The data was converted to time series sequences for deep learning, and ordinary features were extracted for statistical machine learning. Ultimately, deep learning models attained an accuracy of 60%, while tree-based methods attained an accuracy of 65%, showing that some correlation, although small, exists between how a student fixes their mistakes and whether their correction is correct.
Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines and how to optimize learning while following them, Tanagons creates a more comprehensive and engaging learning experience of this complex topic in hopes of preparing children to be more conscious individuals in the mission for sustainability.
The Arizona Board of Education decides the science curricula for students K-6. The standards lack an in depth knowledge of marine life, marine science, ocean conservation, and more related topics. Through interviews with teachers, faculty, and research on ocean literacy and coral reefs, My Coral Reef Booklet assembles various learning activities to cater to students from a variety of education, financial and impairment backgrounds. My Coral Reef Booklet addresses coral reef basics and how students can play their part in coral reef conservation despite their location.
Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.
A Skunkworks project is the name given to a small team of individuals leading an innovative undertaking, and conducting research and development outside of the normal scope of an organization. With this concept in mind, our team of six individuals was tasked with finding and conceptualizing innovative solutions within varying business markets of interest. Our team started off with five markets that we identified issues in and were passionate about solving. These included Sports Engagement, Education, Student Debt, Digital Literacy, and Viral Health. From extensive research, trial and error, and endless conversations we settled on creating business models in two final areas: Student Debt and Viral Health. Our research in Student Debt led us to the discovery that the average Arizona State student, takes out $21,237 in loans for their four year degree and in the whole state of Arizona, a student takes on an average of $22,253. Our solution to this problem was to create a student financial app that served as an efficient debt tracker that provided important information about finances, investing, and student loan information. Additionally, our team also wanted the address the issue of sexually transmitted diseases, just a small scope of Viral Health, within Arizona State University. Our research led us to discover that 50% of people report not getting tested, and from this population most reported it was due to anxiety and financial issues. From our research the StayInformed app was created to provide students with better accessibility to both at-home and clinic testing services, and updated education on sexual health. With this project model we hope to increase the rate of students testing and allow students more agency over their sexual health. Although these two services are addressing very different markets, they both utilize forward thinking technology to create much needed solutions and better the lives of students.
This research study investigates the design principles and best practices for incorporating gamification in EduMobile apps for teaching about mosquito breeding grounds. With limited research investigating the effectiveness of EduMobile apps in engaging and educating students on complex topics, this study aims to uncover best practices for designing EduMobile apps for early learners (elementary and middle schoolers). A convenience sample of adults who were not part of the target demographic were recruited to test the app. The System Usability Scale was used to measure user satisfaction, and question-wise t-tests were conducted to analyze the effectiveness of specific design changes. Results show a significant difference in user satisfaction between the original and revised designs, with question 5 of the System Usability Scale driving the overall difference in score. Inconsistent design was found to increase extraneous cognitive load and split attention, while consistency within different views was shown to increase user perception of system integration. These findings suggest that incorporating gamification and following best practices in designing EduMobile apps can increase student engagement and motivation in learning about mosquito breeding grounds.