Filtering by
- All Subjects: AI
- All Subjects: Virtual Reality
- Creators: Computer Science and Engineering Program
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing a small and large explosion and a box interaction scene that allowed the participants to touch the box virtually with their hand. At the start of this project, it was hypothesized that the haptic glove would have a significant positive impact in at least one of these scenarios. Nine participants took place in the study and immersion was measured through a post-experiment questionnaire. Statistical analysis on the results showed that the haptic glove did have a significant impact on immersion in the box interaction scene, but not in the explosion scene. In the end, I conclude that since this haptic glove does not significantly increase immersion across all scenarios when compared to the standard Vive controller, it should not be used at a replacement in its current state.
This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.
Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.
Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.
This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as size, labeling, and format of the training data. The findings suggest that reducing the training dataset size can lead to a decrease in image coherence, indicating that AI models get worse as the training dataset gets smaller. Moreover, the study makes surprising discoveries regarding AI image generation models that are trained on highly varied datasets. In addition, the study involves a survey in which people were asked to rate the subjective realism of the generated images on a scale ranging from 1 to 5 as well as sorting the images into their respective classes. The findings of this study emphasize the importance of considering dataset variance and size as a critical aspect of improving image generation models as well as the implications of using AI technology in the future.