Filtering by
- All Subjects: Artificial Intelligence
- All Subjects: Virtual Reality
- Creators: Computer Science and Engineering Program
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing a small and large explosion and a box interaction scene that allowed the participants to touch the box virtually with their hand. At the start of this project, it was hypothesized that the haptic glove would have a significant positive impact in at least one of these scenarios. Nine participants took place in the study and immersion was measured through a post-experiment questionnaire. Statistical analysis on the results showed that the haptic glove did have a significant impact on immersion in the box interaction scene, but not in the explosion scene. In the end, I conclude that since this haptic glove does not significantly increase immersion across all scenarios when compared to the standard Vive controller, it should not be used at a replacement in its current state.
This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.
Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.
As threats emerge, change, and grow, the life of a police officer continues to intensify. To help support police training curriculums and police cadets through this critical career juncture, this study proposes a state of the art approach to stress prediction and intervention through wearable devices and machine learning models. As an integral first step of a larger study, the goal of this research is to provide relevant information to machine learning models to formulate a correlation between stress and police officers’ physiological responses on and off on the job. Fitbit devices were leveraged for data collection and were complemented with a custom built Fitbit application, called StressManager, and study dashboard, termed StressWatch. This analysis uses data collected from 15 training cadets at the Phoenix Police Regional Training Academy over a 13 week span. Close collaboration with these participants was essential; the quality of data collection relied on consistent “syncing” and troubleshooting of the Fitbit devices. After the data were collected and cleaned, features related to steps, calories, movement, location, and heart rate were extracted from the Fitbit API and other supplemental resources and passed through to empirically chosen machine learning models. From the results of these models, we formulate that events of increased intensity combined with physiological spikes contribute to the overall stress perception of a police training cadet
The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand what the students need. One of those tools is an online course ratings predictor. Using the predictor, online course instructors can learn the qualities that majority course takers deem as important, and thus they can adjust their lesson plans to fit those qualities. Meanwhile, students will be able to use it to help them in choosing the course to take by comparing the ratings. This research aims to find the best way to predict the rating of online courses using machine learning (ML). To create the ML model, different combinations of the length of the course, the number of materials it contains, the price of the course, the number of students taking the course, the course’s difficulty level, the usage of jargons or technical terms in the course description, the course’s instructors’ rating, the number of reviews the instructors got, and the number of classes the instructors have created on the same platform are used as the inputs. Meanwhile, the output of the model would be the average rating of a course. Data from 350 courses are used for this model, where 280 of them are used for training, 35 for testing, and the last 35 for validation. After trying out different machine learning models, wide neural networks model constantly gives the best training results while the medium tree model gives the best testing results. However, further research needs to be conducted as none of the results are not accurate, with 0.51 R-squared test result for the tree model.