Matching Items (158)
Filtering by

Clear all filters

Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMasud, Abdullah Bin (Co-author) / Koleber, Keith (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools

Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools are performing at a legislative district level. While there are sources of information released at a school district level, many of these are limited and can become obscure to legislators when such school districts lie on the boundary between 2 different legislative districts. Moreover, much of this information is in the form of raw spreadsheets and is often fragmented between government websites and educational organizations. As such, a visualization dashboard that clearly identifies schools and their relative performance within each legislative district would be an extremely valuable tool to legislative bodies and the Arizona public. Although this dashboard and research are rough drafts of a larger concept, they would ideally increase transparency regarding public information about these districts and allow legislators to utilize the dashboard as a tool for greater understanding and more effective policymaking.

ContributorsColyar, Justin Dallas (Author) / Michael, Katina (Thesis director) / Maciejewski, Ross (Committee member) / Tate, Luke (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsLobo, Ian (Co-author) / Koleber, Keith (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of

HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of a static silhouette of a face and a wave-like form to represent the mouth. Audio content analysis was performed on audio sampled from the character’s voice lines. Pitch and amplitude derived from the analysis was used to animate the character’s visual features such as it’s brightness, color, and mouth movement. The mouth’s movement and color was manipulated with the audio’s pitch. The lights of Wave were controlled by the amplitude of the audio. Design considerations were made to accommodate those with visual disabilities such as color blindness and epilepsy. Overall the final audio visualization satisfied the project sponsor and built upon existing audio visualization work. User feedback will be a necessity for improving the audio visualization in the future.

ContributorsNguyen, Joshep D (Author) / Chavez-Echaegaray, Helen (Thesis director) / Waggoner, Trae (Committee member) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation are disguised as a hair salon app to maintain a low profile on the user’s phone. The HairHelp app features quick exit navigation, a secure database to store a user’s private and personal documents in case of emergency, and a checklist of safety planning measures. The steps taken in this project serve as the foundation for a larger project in the long term.

ContributorsShovkovy, Sophia (Author) / Balasooriya, Janaka (Thesis director) / Wilkey, Douglas (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach for exploring outer space and also an educational app where the user can learn more about objects as they visit them.

ContributorsSadachar, Shivam (Author) / O'Rourke, Joseph (Thesis director) / Loyd, Parke (Committee member) / Melodie, Kao (Committee member) / Computer Science and Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes.

This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes. Further, almost all of these games are played on a rectangular grid. Contrarily, this project develops an AI player, referred to as GG-net, to play the online strategy game Warzone, which is based on the classic board game Risk. Warzone is played on a wide variety of irregularly shaped maps. Prior research has struggled to create an effective AI for Risk-like games due to the immense branching factor. The most successful attempts tended to rely on manually restricting the set of actions the AI considered while also engineering useful features for the AI to consider. GG-net uses no human knowledge, but rather a genetic algorithm combined with a graph neural network. Together, these methods allow GG-net to perform competitively across a multitude of maps. GG-net outperformed the built-in rule-based AI by 413 Elo (representing an 80.7% chance of winning) and an approach based on AlphaZero using graph neural networks by 304 Elo (representing a 74.2% chance of winning). This same advantage holds across both seen and unseen maps. GG-net appears to be a strong opponent on both small and medium maps, however, on large maps with hundreds of territories, inefficiencies in GG-net become more significant and GG-net struggles against the rule-based approach. Overall, GG-net was able to successfully learn the game and generalize across maps of a similar size, albeit further work is required for GG-net to become more successful on large maps.
ContributorsBauer, Andrew (Author) / Yang, Yezhou (Thesis director) / Harrison, Blake (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.
ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05