Filtering by
- All Subjects: Computer Science
- All Subjects: Artificial Intelligence
- Creators: Computer Science and Engineering Program
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
Education has been at the forefront of many issues in Arizona over the past several years with concerns over lack of funding sparking the Red for Ed movement. However, despite the push for educational change, there remain many barriers to education including a lack of visibility for how Arizona schools are performing at a legislative district level. While there are sources of information released at a school district level, many of these are limited and can become obscure to legislators when such school districts lie on the boundary between 2 different legislative districts. Moreover, much of this information is in the form of raw spreadsheets and is often fragmented between government websites and educational organizations. As such, a visualization dashboard that clearly identifies schools and their relative performance within each legislative district would be an extremely valuable tool to legislative bodies and the Arizona public. Although this dashboard and research are rough drafts of a larger concept, they would ideally increase transparency regarding public information about these districts and allow legislators to utilize the dashboard as a tool for greater understanding and more effective policymaking.
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of a static silhouette of a face and a wave-like form to represent the mouth. Audio content analysis was performed on audio sampled from the character’s voice lines. Pitch and amplitude derived from the analysis was used to animate the character’s visual features such as it’s brightness, color, and mouth movement. The mouth’s movement and color was manipulated with the audio’s pitch. The lights of Wave were controlled by the amplitude of the audio. Design considerations were made to accommodate those with visual disabilities such as color blindness and epilepsy. Overall the final audio visualization satisfied the project sponsor and built upon existing audio visualization work. User feedback will be a necessity for improving the audio visualization in the future.
This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation are disguised as a hair salon app to maintain a low profile on the user’s phone. The HairHelp app features quick exit navigation, a secure database to store a user’s private and personal documents in case of emergency, and a checklist of safety planning measures. The steps taken in this project serve as the foundation for a larger project in the long term.
Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.
Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach for exploring outer space and also an educational app where the user can learn more about objects as they visit them.
The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.