Matching Items (49)
Filtering by

Clear all filters

Description
This thesis examines the applications of the Internet of Things and Artificial Intelligence within small-to-medium sized retail businesses. These technologies have become a common aspect of a modern business environment, yet there remains a level of unfamiliarity with these concepts for business owners to fully utilize these tools. The complexity

This thesis examines the applications of the Internet of Things and Artificial Intelligence within small-to-medium sized retail businesses. These technologies have become a common aspect of a modern business environment, yet there remains a level of unfamiliarity with these concepts for business owners to fully utilize these tools. The complexity behind IoT and AI has been simplified to provide benefits for a brick and mortar business store in regards to security, logistics, profit optimization, operations, and analytics. While these technologies can contribute to a business’s success, they potentially come with a high and unattainable financial cost. In order to investigate which aspects of businesses can benefit the most from these technologies, interviews with small-to-medium business owners were conducted and paired with an analysis of published research. These interviews provided specific pain points and issues that could potentially be solved by these technologies. The analysis conducted in this thesis gives a detailed summary of this research and provides a business model for two small businesses to optimize their Internet of Things and Artificial Intelligence to solve these pain points, while staying in their financial budget.
ContributorsAldrich, Lauren (Co-author) / Bricker, Danielle (Co-author) / Sebold, Brent (Thesis director) / Vermeer, Brandon (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large

While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large well tagged datasets for their models. In this project I attempt to apply concepts in NLP and procedural generation to a system which can generate a rough scene estimation of a natural language description in a 3d environment from a free use database of models. The primary objective of this system, rather than a completely accurate representation, is to generate a useful or interesting result. The use of such a system comes in assisting designers who utilize 3d scenes or environments for their work.
ContributorsHann, Jacob R. (Author) / Kobayashi, Yoshihiro (Thesis director) / Srivastava, Siddharth (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
As automation research into penetration testing has developed, several methods have been proposed as suitable control mechanisms for use in pentesting frameworks. These include Markov Decision Processes (MDPs), partially observable Markov Decision Processes (POMDPs), and POMDPs utilizing reinforcement learning. Since much work has been done automating other aspects of the

As automation research into penetration testing has developed, several methods have been proposed as suitable control mechanisms for use in pentesting frameworks. These include Markov Decision Processes (MDPs), partially observable Markov Decision Processes (POMDPs), and POMDPs utilizing reinforcement learning. Since much work has been done automating other aspects of the pentesting process using exploit frameworks and scanning tools, this is the next focal point in this field. This paper shows a fully-integrated solution comprised of a POMDP-based planning algorithm, the Nessus scanning utility, and MITRE's CALDERA pentesting platform. These are linked in order to create an autonomous AI attack platform with scanning, planning, and attack capabilities.
ContributorsDejarnett, Eric Andrew (Author) / Huang, Dijiang (Thesis director) / Chowdhary, Ankur (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
91% of smartphone and tablet users experience a problem with their device screen being oriented the wrong way during use [11]. In [11], the authors proposed iRotate, a previous solution which uses computer vision to solve the orientation problem. We propose iLieDown, an improved method of automatically rotating smartphones, tablets,

91% of smartphone and tablet users experience a problem with their device screen being oriented the wrong way during use [11]. In [11], the authors proposed iRotate, a previous solution which uses computer vision to solve the orientation problem. We propose iLieDown, an improved method of automatically rotating smartphones, tablets, and other device displays. This paper introduces a new algorithm to correctly orient the display relative to the user’s face using a convolutional neural network (CNN). The CNN model is trained to predict the rotation of faces in various environments through data augmentation, uses a confidence threshold, and analyzes multiple images to be accurate and robust. iLieDown is battery and CPU efficient, causes no noticeable lag to the user during use, and is 6x more accurate than iRotate.
ContributorsTallman, Riley Paul (Author) / Yang, Yezhou (Thesis director) / Fang, Zhiyuan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to

One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to implement a series of states or decisions instead to give the illusion of intelligence. Despite this limitation, games can still generate a wide range of experiences for the player. The Hybrid Game AI Framework is an AI system that combines the benefits of two commonly used approaches to developing game AI: Behavior Trees and Finite State Machines. Developed in the Unity Game Engine and the C# programming language, this AI Framework represents the research that went into studying modern approaches to game AI and my own attempt at implementing the techniques learned. Object-oriented programming concepts such as inheritance, abstraction, and low coupling are utilized with the intent to create game AI that's easy to implement and expand upon. The final goal was to create a flexible yet structured AI data structure while also minimizing drawbacks by combining Behavior Trees and Finite State Machines.
ContributorsRamirez Cordero, Erick Alberto (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This thesis serves as a baseline for the potential for prediction through machine learning (ML) in baseball. Hopefully, it also will serve as motivation for future work to expand and reach the potential of sabermetrics, advanced Statcast data and machine learning. The problem this thesis attempts to solve is predicting

This thesis serves as a baseline for the potential for prediction through machine learning (ML) in baseball. Hopefully, it also will serve as motivation for future work to expand and reach the potential of sabermetrics, advanced Statcast data and machine learning. The problem this thesis attempts to solve is predicting the outcome of a pitch. Given proper pitch data and situational data, is it possible to predict the result or outcome of a pitch? The result or outcome refers to the specific outcome of a pitch, beyond ball or strike, but if the hitter puts the ball in play for a double, this thesis shows how I attempted to predict that type of outcome. Before diving into my methods, I take a deep look into sabermetrics, advanced statistics and the history of the two in Major League Baseball. After this, I describe my implemented machine learning experiment. First, I found a dataset that is suitable for training a pitch prediction model, I then analyzed the features and used some feature engineering to select a set of 16 features, and finally, I trained and tested a pair of ML models on the data. I used a decision tree classifier and random forest classifier to test the data. I attempted to us a long short-term memory to improve my score, but came up short. Each classifier performed at around 60% accuracy. I also experimented using a neural network approach with a long short-term memory (LSTM) model, but this approach requires more feature engineering to beat the simpler classifiers. In this thesis, I show examples of five hitters that I test the models on and the accuracy for each hitter. This work shows promise that advanced classification models (likely requiring more feature engineering) can provide even better prediction outcomes, perhaps with 70% accuracy or higher! There is much potential for future work and to improve on this thesis, mainly through the proper construction of a neural network, more in-depth feature analysis/selection/extraction, and data visualization.
ContributorsGoodman, Avi (Author) / Bryan, Chris (Thesis director) / Hsiao, Sharon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Vulnerability testing/evaluation is a regular task for cyber-security groups. Conducting tasks like this can take up a great amount of time and may not be perfect. Automating these tasks helps speed up the rate at which experts can test systems. However, script based or static programs that run automatically often

Vulnerability testing/evaluation is a regular task for cyber-security groups. Conducting tasks like this can take up a great amount of time and may not be perfect. Automating these tasks helps speed up the rate at which experts can test systems. However, script based or static programs that run automatically often do not have the versatility required to properly replace human analysis. With the advances in Artificial Intelligence and Machine Learning, a utility can be developed that would allow for the creation of penetration testing plans rather than manually testing vulnerabilities. A variety of existing cyber-security programs and utilities provide an API layer that commonly interacts with the Python environment. With the commonality of AI/ML tools within the Python ecosystem, a plugin like interface can be developed to feed any AI/ML program real world data and receive a response/report in return. Using Python 2.7+, Python 3.6+, pymdptoolbox, and POMDPy, a program was developed that ingests real-world data from scanning tools and returned a suggested course of action to be used by analysts in order to perform a practical validation of the algorithms in a real world setting. This program was able to successfully navigate a test network and produce results that were expected to be found on the target machines without needing human analysis of the network. Using POMDP based systems for more cyber-security type tasks may be a valuable use case for future developments and help ease the burden faced in a rapid paced world.
ContributorsBelanger, Connor Lawrence (Author) / Huang, Dijiang (Thesis director) / Chowdhary, Ankur (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or disconnect. The system was demonstrated on two real robots, a Fetch and a PeopleBot, by conducting a surveillance task on the fifth floor of the Computer Science building at Arizona State University. The next part of the system includes extensions for teaming with humans. An Android application was created to serve as the interface between the system and human teammates. This application provides a way for the system to communicate with humans in the loop. In addition, it sends location information of the human teammates to the system so that goal recognition can be performed. This goal recognition allows the generation of human-aware plans. This capability was demonstrated in a mock search and rescue scenario using the Fetch to locate a missing teammate.
ContributorsSaba, Gabriel Christer (Author) / Kambhampati, Subbarao (Thesis director) / Doupé, Adam (Committee member) / Chakraborti, Tathagata (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The integration of Artificial Intelligence (AI) algorithms and tools in cloud computing is revolutionizing business processes with its increased adoption among leading technology companies. By analyzing the AI Cloud solutions that companies offer across diverse industries– including healthcare, gastronomy, streaming applications, and service providers– this thesis determines their impact on

The integration of Artificial Intelligence (AI) algorithms and tools in cloud computing is revolutionizing business processes with its increased adoption among leading technology companies. By analyzing the AI Cloud solutions that companies offer across diverse industries– including healthcare, gastronomy, streaming applications, and service providers– this thesis determines their impact on overall company productivity and user experience. Some of the platforms offering these tools that were evaluated include those from major technology and business intelligence companies, such as Salesforce’s AI Cloud Tools, Oracle’s Cloud Infrastructure, Amazon Web Services, Microsoft Azure’s OpenAI Service, and Google Cloud. In order to determine the impact of AI Cloud on both company productivity and user experience, this thesis cross-analyzed shifts in metrics such as workload efficiency, customer resource management, sales performance, and financial outcomes following AI Cloud implementation. The initial implementation of AI Cloud can be costly and as an increasingly pervasive technology with potential to attract security threats, it can be met with uncertainty and doubt. Despite these initial disadvantages, the metrics used in this thesis suggest that AI Cloud solutions have an overall positive impact on company productivity and user experience when intentional, proper deployment is exercised. The literature in this thesis suggests that achieving this successful deployment requires consideration of ethical guidelines, security practices, and human-AI integrated mediation when implementing AI solutions. By ensuring that the AI Cloud solutions companies offer are optimal for their processes, have proper safeguards in place for any potential errors and security concerns, and prioritize a positive user experience for both employees and customers, companies can increase their productivity and overall efficiency of their business processes.
ContributorsLecuru, Sophia (Author) / Wang, Amy (Co-author) / Martin, Thomas (Thesis director) / Roumina, Kavous (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2025-05