Matching Items (419)
Filtering by

Clear all filters

Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMasud, Abdullah Bin (Co-author) / Koleber, Keith (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsLobo, Ian (Co-author) / Koleber, Keith (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence’s facial recognition programs are inherently racially biased. The programs are not necessarily created with the intent to disproportionately impact marginalized communities, but through their data mining process of learning, they can become biased as the data they use may train them to think in a biased manner. Biased

Artificial Intelligence’s facial recognition programs are inherently racially biased. The programs are not necessarily created with the intent to disproportionately impact marginalized communities, but through their data mining process of learning, they can become biased as the data they use may train them to think in a biased manner. Biased data is difficult to spot as the programming field is homogeneous and this issue reflects underlying societal biases. Facial recognition programs do not identify minorities at the same rate as their Caucasian counterparts leading to false positives in identifications and an increase of run-ins with the law. AI does not have the ability to role-reverse judge as a human does and therefore its use should be limited until a more equitable program is developed and thoroughly tested.

ContributorsGurtler, Charles William (Author) / Iheduru, Okechukwu (Thesis director) / Fette, Donald (Committee member) / Economics Program in CLAS (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project did a deep dive on AI, business applications for AI and then my team and I built an AI model to better understand shipping patterns and inefficiencies of different porting regions.

ContributorsFreudenberger, Evan Martin (Author) / Wiedmer, Robert (Thesis director) / Duarte, Brett (Committee member) / Thunderbird School of Global Management (Contributor) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

ContributorsCarreto, Cesar (Author) / Pizziconi, Vincent (Thesis director) / Vernon, Brent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes.

This project aspires to develop an AI capable of playing on a variety of maps in a Risk-like board game. While AI has been successfully applied to many other board games, such as Chess and Go, most research is confined to a single board and is inflexible to topological changes. Further, almost all of these games are played on a rectangular grid. Contrarily, this project develops an AI player, referred to as GG-net, to play the online strategy game Warzone, which is based on the classic board game Risk. Warzone is played on a wide variety of irregularly shaped maps. Prior research has struggled to create an effective AI for Risk-like games due to the immense branching factor. The most successful attempts tended to rely on manually restricting the set of actions the AI considered while also engineering useful features for the AI to consider. GG-net uses no human knowledge, but rather a genetic algorithm combined with a graph neural network. Together, these methods allow GG-net to perform competitively across a multitude of maps. GG-net outperformed the built-in rule-based AI by 413 Elo (representing an 80.7% chance of winning) and an approach based on AlphaZero using graph neural networks by 304 Elo (representing a 74.2% chance of winning). This same advantage holds across both seen and unseen maps. GG-net appears to be a strong opponent on both small and medium maps, however, on large maps with hundreds of territories, inefficiencies in GG-net become more significant and GG-net struggles against the rule-based approach. Overall, GG-net was able to successfully learn the game and generalize across maps of a similar size, albeit further work is required for GG-net to become more successful on large maps.
ContributorsBauer, Andrew (Author) / Yang, Yezhou (Thesis director) / Harrison, Blake (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
This project explores the potential of an artificial intelligence/machine learning algorithm, K-Means to augment the connection between two individuals through a game interface. Further implementation of such technology is theorized in the form of a two-way chatbot. The role of bias is extensively reported and researched in order to remain

This project explores the potential of an artificial intelligence/machine learning algorithm, K-Means to augment the connection between two individuals through a game interface. Further implementation of such technology is theorized in the form of a two-way chatbot. The role of bias is extensively reported and researched in order to remain cognizant of these new technological advancements.
ContributorsHatfield, Kacy (Author) / Sha, Xin (Thesis director) / Finn, Ed (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05
Description
This project discusses what Artificial Intelligence (AI) is and how it is beneficial for society. The project is in favor of AI and talks about how AI is becoming apparent in everyday use cases, along with technology such as phones and cars. The majority of the thesis shows how AI

This project discusses what Artificial Intelligence (AI) is and how it is beneficial for society. The project is in favor of AI and talks about how AI is becoming apparent in everyday use cases, along with technology such as phones and cars. The majority of the thesis shows how AI is helpful for healthcare and can assist physicians and nurses do their jobs. Also, how AI helps with medical imaging, drug discovery, dieting, medical devices, and other applicable cases.
ContributorsRahman, Hashim (Author) / Rowans, Leslie (Thesis director) / Connell, Janice (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05