Matching Items (19)
Filtering by

Clear all filters

Description
In 2022, the revenue generated from accounting services hit an all-time high of 119.48 billion USD (“Accounting Services in the US - Market Size”, 2022). On top of this, research has shown that 45% of all accounting professionals would like to automate something about their workflow (Thomas, 2020). Indeed, a

In 2022, the revenue generated from accounting services hit an all-time high of 119.48 billion USD (“Accounting Services in the US - Market Size”, 2022). On top of this, research has shown that 45% of all accounting professionals would like to automate something about their workflow (Thomas, 2020). Indeed, a lot of bookkeeping accountancy has been phased out by simple automation. However, larger accounting tasks like business mergers still require a team of accountants despite being a largely iterative process. This project chronicles one such attempt at automating accounting events or transactions that are performed by businesses both large and small. With the help of accounting students Madeline Stolper and Heddie Liu we were able to build a fully-functioning website to automate accounting transactions. For this project, we used industry-standard software frameworks React and Express to build the site with dynamic accounting applications. These applications were built with reusable components, making the development of future applications very simple. We also leveraged cutting-edge technological solutions from Amazon Web Services to make the website available on the Internet with rapid response times. Lastly, we incorporated an agile approach to project management and communication, in order to create functionality in the most efficient and organized manner possible. On a large scale, something like this has never been attempted and TurboIFRS/GAAP represents a revolutionary leap in accounting automation.
ContributorsForde, Jakob (Author) / Roth, Ryder (Co-author) / McLemore, Benjamin (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.
ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues where entire competition brackets have had to be scrapped and replayed because scores were not handled correctly. The sport is in need of a supplementary scoring solution that can provide quality control and accuracy over large matches where there aren’t enough referees present to score games. Drawing from the ACL regulations as well as personal experience and testimony from ACL Pro players, a list of requirements was generated for a potential automatic scoring system. Then, a market analysis of existing scoring solutions was done, and it found that there are no solutions on the market that can automatically score a cornhole game. Using the problem requirements and previous attempts to solve the scoring problem, a list of concepts was generated and evaluated against each other to determine which scoring system design should be developed. After determining that the chosen concept was the best way to approach the problem, the problem requirements and cornhole rules were further refined into a set of physical assumptions and constraints about the game itself. This informed the choice, structure, and implementation of the algorithms that score the bags. The prototype concept was tested on their own, and areas of improvement were found. Lastly, based on the results of the tests and what was learned from the engineering process, a roadmap was set out for the future development of the automatic scoring system into a full, market-ready product.

ContributorsGillespie, Reagan (Author) / Sugar, Thomas (Thesis director) / Li, Baoxin (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description
The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order

The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order to ensure their reliability and accuracy. This project explores different ways in which services can be tested and evaluated through the design of various testing techniques and their implementations in a web application, which can be used by students or developers to test their web services.
ContributorsHilliker, Mark Paul (Author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To

One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the exchange of ideas, purpose, and objectives, through the formation of associations, links, and relations. Mastering an understanding of the Blogosphere can greatly help facilitate the needs of the ever growing number of these users, as well as producers, service providers, and advertisers into facilitation of the categorization and navigation of this vast environment. This work explores a novel method to leverage the collective wisdom from the infused label space for blog search and discovery. The work demonstrates that the wisdom space can provide a most unique and desirable framework to which to discover the highly sought after background information that could aid in the building of classifiers. This work incorporates this insight into the construction of a better clustering of blogs which boosts the performance of classifiers for identifying more relevant labels for blogs, and offers a mechanism that can be incorporated into replacing spurious labels and mislabels in a multi-labeled space.
ContributorsGalan, Magdiel F (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
Description
Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, in particular, is a promising candidate given that it is our largest sensory organ with impressive spatial and temporal acuity. Although some approaches have been proposed for touch-based information delivery, they are not without limitations including high learning curves, limited applicability and/or limited expression. This is largely due to the lack of a versatile, comprehensive design theory--specifically, a theory that addresses the design of touch-based building blocks for expandable, efficient, rich and robust touch languages that are easy to learn and use. Moreover, beyond design, there is a lack of implementation and evaluation theories for such languages. To overcome these limitations, a unified, theoretical framework, inspired by natural, spoken language, is proposed called Somatic ABC's for Articulating (designing), Building (developing) and Confirming (evaluating) touch-based languages. To evaluate the usefulness of Somatic ABC's, its design, implementation and evaluation theories were applied to create communication languages for two very unique application areas: audio described movies and motor learning. These applications were chosen as they presented opportunities for complementing communication by offloading information, typically conveyed visually and/or aurally, to the skin. For both studies, it was found that Somatic ABC's aided the design, development and evaluation of rich somatic languages with distinct and natural communication units.
ContributorsMcDaniel, Troy Lee (Author) / Panchanathan, Sethuraman (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
Description
Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements.

Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging.

In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the

multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.
ContributorsHaddad, Bashar Muneer (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / He, Jingrui (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2019
Description
Visual attention (VA) is the study of mechanisms that allow the human visual system (HVS) to selectively process relevant visual information. This work focuses on the subjective and objective evaluation of computational VA models for the distortion-free case as well as in the presence of image distortions.



Existing VA models are

Visual attention (VA) is the study of mechanisms that allow the human visual system (HVS) to selectively process relevant visual information. This work focuses on the subjective and objective evaluation of computational VA models for the distortion-free case as well as in the presence of image distortions.



Existing VA models are traditionally evaluated by using VA metrics that quantify the match between predicted saliency and fixation data obtained from eye-tracking experiments on human observers. Though there is a considerable number of objective VA metrics, there exists no study that validates that these metrics are adequate for the evaluation of VA models. This work constructs a VA Quality (VAQ) Database by subjectively assessing the prediction performance of VA models on distortion-free images. Additionally, shortcomings in existing metrics are discussed through illustrative examples and a new metric that uses local weights based on fixation density and that overcomes these flaws, is proposed. The proposed VA metric outperforms all other popular existing metrics in terms of the correlation with subjective ratings.



In practice, the image quality is affected by a host of factors at several stages of the image processing pipeline such as acquisition, compression, and transmission. However, none of the existing studies have discussed the subjective and objective evaluation of visual saliency models in the presence of distortion. In this work, a Distortion-based Visual Attention Quality (DVAQ) subjective database is constructed to evaluate the quality of VA maps for images in the presence of distortions. For creating this database, saliency maps obtained from images subjected to various types of distortions, including blur, noise and compression, and varying levels of distortion severity are rated by human observers in terms of their visual resemblance to corresponding ground-truth fixation density maps. The performance of traditionally used as well as recently proposed VA metrics are evaluated by correlating their scores with the human subjective ratings. In addition, an objective evaluation of 20 state-of-the-art VA models is performed using the top-performing VA metrics together with a study of how the VA models’ prediction performance changes with different types and levels of distortions.
ContributorsGide, Milind Subhash (Author) / Karam, Lina J (Thesis advisor) / Abousleman, Glen (Committee member) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2016
Description
Machine learning has quickly become an ever-popular term and growing field in the area of computation. With each passing day, we see advancements of this field with natural language models, speech recognition, pattern recognition, computer vision, and many more. This progress is all in a quest to one day, meet

Machine learning has quickly become an ever-popular term and growing field in the area of computation. With each passing day, we see advancements of this field with natural language models, speech recognition, pattern recognition, computer vision, and many more. This progress is all in a quest to one day, meet or exceed the limits of humans in these areas. While visual-based detectors have seen an exciting level of growth and progress with large community projects, there currently exists a significant smaller community effort in the realm of audio-based emotional detectors. This seems to be a road worth exploring, as audio-based emotion detectors can complement the more popular facial-based detection systems by providing other contextual cues or information that may not be available to a visual-based detector. For example, a system utilizing audio has the benefit of being able to utilize an array of indirect emotional cues, such as tone or vocal sentence analysis, which a visual-based system would not capture since it is not capable of detecting these cues. A system using audio-based emotional detection would be incredibly important in instances where people partake in conversations among groups throughout a venue, such as when waiting for a flight in an airport. This system can be useful for environments demanding high accuracy recognition systems with multiple levels of confirmation, as a multimodal system consisting of two detectors, one facial and one audible, can provide a stronger prediction of emotion by complimenting on another. As such, I propose the following question that this research project will explore: how can an audio-based emotional detection augment facial emotion detection and how can such an audio-based system be designed in a low-cost and accurate manner?
ContributorsRoss, James (Author, Co-author) / Berisha, Visar (Thesis director) / Lubold, Nichola (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-12
Description
Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from

Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from afar. As a sensory organ in particular, the eyes have an unparalleled ability to adjust to varying degrees of light, color, and distance. Therefore, in the case of a non-visual traveler, someone who is blind or low vision, access to visual information is unattainable if it is positioned beyond the reach of the preferred mobility device or outside the path of travel. Although, the area of assistive technology in terms of electronic travel aids (ETA’s) has received considerable attention over the last two decades; surprisingly, the field has seen little work in the area focused on augmenting rather than replacing current non-visual travel techniques, methods, and tools. Consequently, this work describes the design of an intuitive tactile language and series of wearable tactile interfaces (the Haptic Chair, HaptWrap, and HapBack) to deliver real-time spatiotemporal data. The overall intuitiveness of the haptic mappings conveyed through the tactile interfaces are evaluated using a combination of absolute identification accuracy of a series of patterns and subjective feedback through post-experiment surveys. Two types of spatiotemporal representations are considered: static patterns representing object location at a single time instance, and dynamic patterns, added in the HaptWrap, which represent object movement over a time interval. Results support the viability of multi-dimensional haptics applied to the body to yield an intuitive understanding of dynamic interactions occurring around the navigator during travel. Lastly, it is important to point out that the guiding principle of this work centered on providing the navigator with spatial knowledge otherwise unattainable through current mobility techniques, methods, and tools, thus, providing the \emph{navigator} with the information necessary to make informed navigation decisions independently, at a distance.
ContributorsDuarte, Bryan Joiner (Author) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020