Matching Items (25)
Filtering by

Clear all filters

Description
In 2022, the revenue generated from accounting services hit an all-time high of 119.48 billion USD (“Accounting Services in the US - Market Size”, 2022). On top of this, research has shown that 45% of all accounting professionals would like to automate something about their workflow (Thomas, 2020). Indeed, a

In 2022, the revenue generated from accounting services hit an all-time high of 119.48 billion USD (“Accounting Services in the US - Market Size”, 2022). On top of this, research has shown that 45% of all accounting professionals would like to automate something about their workflow (Thomas, 2020). Indeed, a lot of bookkeeping accountancy has been phased out by simple automation. However, larger accounting tasks like business mergers still require a team of accountants despite being a largely iterative process. This project chronicles one such attempt at automating accounting events or transactions that are performed by businesses both large and small. With the help of accounting students Madeline Stolper and Heddie Liu we were able to build a fully-functioning website to automate accounting transactions. For this project, we used industry-standard software frameworks React and Express to build the site with dynamic accounting applications. These applications were built with reusable components, making the development of future applications very simple. We also leveraged cutting-edge technological solutions from Amazon Web Services to make the website available on the Internet with rapid response times. Lastly, we incorporated an agile approach to project management and communication, in order to create functionality in the most efficient and organized manner possible. On a large scale, something like this has never been attempted and TurboIFRS/GAAP represents a revolutionary leap in accounting automation.
ContributorsForde, Jakob (Author) / Roth, Ryder (Co-author) / McLemore, Benjamin (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.
ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order

The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order to ensure their reliability and accuracy. This project explores different ways in which services can be tested and evaluated through the design of various testing techniques and their implementations in a web application, which can be used by students or developers to test their web services.
ContributorsHilliker, Mark Paul (Author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics in modeling discontinuities.

A novel, alternative, and systematic framework based on a nonlocal lattice particle model is proposed in this study. The uniqueness of the proposed model is the inclusion of both pair-wise local and multi-body nonlocal potentials in the formulation. First, the basic ideas of the proposed framework for 2D isotropic solid are presented. Derivations for triangular and square lattice structure are discussed in detail. Both mechanical deformation and fracture process are simulated and model verification and validation are performed with existing analytical solutions and experimental observations. Following this, the extension to general 3D isotropic solids based on the proposed local and nonlocal potentials is given. Three cubic lattice structures are discussed in detail. Failure predictions using the 3D simulation are compared with experimental testing results and very good agreement is observed. Next, a lattice rotation scheme is proposed to account for the material orientation in modeling anisotropic solids. The consistency and difference compared to the classical material tangent stiffness transformation method are discussed in detail. The implicit and explicit solution methods for the proposed lattice particle model are also discussed. Finally, some conclusions and discussions based on the current study are drawn at the end.
ContributorsChen, Hailong (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Mignolet, Marc (Committee member) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2015
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD)

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Oswald, Jay (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
Description
Structural/system health monitoring (SHM) and prognostic health management (PHM) are vital techniques to ensure engineering system reliability and safety during the service. As multi-functionality and enhanced performance are in demand, modern engineering systems including aerospace, mechanical, and civil applications have become more complex. The constituent and architectural complexity, and multisource

Structural/system health monitoring (SHM) and prognostic health management (PHM) are vital techniques to ensure engineering system reliability and safety during the service. As multi-functionality and enhanced performance are in demand, modern engineering systems including aerospace, mechanical, and civil applications have become more complex. The constituent and architectural complexity, and multisource sensing sources in modern engineering systems may limit the monitoring capabilities of conventional approaches and require more advanced SHM/PHM techniques. Therefore, a hybrid methodology that incorporates information fusion, nondestructive evaluation (NDE), machine learning (ML), and statistical analysis is needed for more effective damage diagnosis/prognosis and system safety management.This dissertation presents an automated aviation health management technique to enable proactive safety management for both aircraft and national airspace system (NAS). A real-time, data-driven aircraft safety monitoring technique using ML models and statistical models is developed to enable an early-stage upset detection capability, which can improve pilot’s situational awareness and provide a sufficient safety margin. The detection accuracy and computational efficiency of the developed monitoring techniques is validated using commercial unlabeled flight data recorder (FDR) and reported accident FDR dataset. A stochastic post-upset prediction framework is developed using a high-fidelity flight dynamics model to predict the post-impacts in both aircraft and air traffic system. Stall upset scenarios that are most likely occurred during loss of control in-flight (LOC-I) operation are investigated, and stochastic flight envelopes and risk region are predicted to quantify their severities. In addition, a robust, automatic damage diagnosis technique using ultrasonic Lamb waves and ML models is developed to effectively detect and classify fatigue damage modes in composite structures. The dispersion and propagation characteristics of the Lamb waves in a composite plate are investigated. A deep autoencoder-based diagnosis technique is proposed to detect fatigue damage using anomaly detection approach and automatically extract damage sensitive features from the waves. The patterns in the features are then further analyzed using outlier detection approach to classify the fatigue damage modes. The developed diagnosis technique is validated through an in-situ fatigue tests with periodic active sensing. The developed techniques in this research are expected to be integrated with the existing safety strategies to enhance decision making process for improving engineering system safety without affecting the system’s functions.
ContributorsLee, Hyunseong (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Fard, Masoud Yekani (Committee member) / Tang, Pingbo (Committee member) / Campbell, Angela (Committee member) / Arizona State University (Publisher)
Created2021
Description
Machine learning has quickly become an ever-popular term and growing field in the area of computation. With each passing day, we see advancements of this field with natural language models, speech recognition, pattern recognition, computer vision, and many more. This progress is all in a quest to one day, meet

Machine learning has quickly become an ever-popular term and growing field in the area of computation. With each passing day, we see advancements of this field with natural language models, speech recognition, pattern recognition, computer vision, and many more. This progress is all in a quest to one day, meet or exceed the limits of humans in these areas. While visual-based detectors have seen an exciting level of growth and progress with large community projects, there currently exists a significant smaller community effort in the realm of audio-based emotional detectors. This seems to be a road worth exploring, as audio-based emotion detectors can complement the more popular facial-based detection systems by providing other contextual cues or information that may not be available to a visual-based detector. For example, a system utilizing audio has the benefit of being able to utilize an array of indirect emotional cues, such as tone or vocal sentence analysis, which a visual-based system would not capture since it is not capable of detecting these cues. A system using audio-based emotional detection would be incredibly important in instances where people partake in conversations among groups throughout a venue, such as when waiting for a flight in an airport. This system can be useful for environments demanding high accuracy recognition systems with multiple levels of confirmation, as a multimodal system consisting of two detectors, one facial and one audible, can provide a stronger prediction of emotion by complimenting on another. As such, I propose the following question that this research project will explore: how can an audio-based emotional detection augment facial emotion detection and how can such an audio-based system be designed in a low-cost and accurate manner?
ContributorsRoss, James (Author, Co-author) / Berisha, Visar (Thesis director) / Lubold, Nichola (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-12
Description
Collision-free path planning is also a major challenge in managing unmanned aerial vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV routing policies using multi-agent reinforcement learning has been considered, and propose a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named 3M-RL, for flight planning, where multiple vehicles need

Collision-free path planning is also a major challenge in managing unmanned aerial vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV routing policies using multi-agent reinforcement learning has been considered, and propose a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named 3M-RL, for flight planning, where multiple vehicles need to avoid collisions with each other while moving towards their destinations. In this system, each UAV makes decisions based on local observations, and does not communicate with other UAVs. The algorithm trains a routing policy using an Actor-Critic neural network with multi-resolution observations, including detailed local information and aggregated global information based on mean-field. The algorithm tackles the curse-of-dimensionality problem in multi-agent reinforcement learning and provides a scalable solution. The proposed algorithm is tested in different complex scenarios in both 2D and 3D space and the simulation results show that 3M-RL result in good routing policies. Also as a compliment, dynamic data communications between UAVs and a control center has also been studied, where the control center needs to monitor the safety state of each UAV in the system in real time, where the transition of risk level is simply considered as a Markov process. Given limited communication bandwidth, it is impossible for the control center to communicate with all UAVs at the same time. A dynamic learning problem with limited communication bandwidth is also discussed in this paper where the objective is to minimize the total information entropy in real-time risk level tracking. The simulations also demonstrate that the algorithm outperforms policies such as a Round & Robin policy.
ContributorsWang, Weichang (Author) / Ying, Lei (Thesis advisor) / Liu, Yongming (Thesis advisor) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2021