Filtering by
- All Subjects: Engineering
- Creators: Mechanical and Aerospace Engineering Program
This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.
This report summarizes the development of a test stand used to measure the thrust or impulse of pulsed plasma thrusters (PPT). Currently, there is a lack of accessible, cost-efficient methods for measuring thrust in the market due to the difficulties associated with developing a test stand for extremely low thrust outputs. Despite the difficulties, there is an ever-growing need to develop new methods of measuring thrust as the increased demand for small satellites has prompted investors from the government and private sectors to conduct further research into the development of better propulsion systems for space applications. A part of the developmental process of making propulsion systems is being able to test the thrust of these propulsion systems under vacuum conditions that simulate a space environment. This report details the research conducted on existing test stands as well as the process of designing, manufacturing, and testing a thrust measurement device.
The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to explore this new region of flight. The goal of the X-2 was to gather data on high Mach Number and high-altitude flight as well as aerodynamic heating. The X-2 had poor lateral stability resulting in it being unstable at high Mach Numbers and moderate angles of attack. The program was full of new and unforeseen technical challenges resulting in many delays and tragedies. The program ended when stability problems resulted in a fatal crash destroying the aircraft and killing the test pilot. This case study addresses the historical background of the program, human influence, the stability problems encountered and conducting a stability analysis of the aircraft. To conduct the stability analysis, the potential flow solver, VORLAX, was used to gather aerodynamic coefficient data of the X-2 and determine if these stability problems could be determined from the data obtained. By comparing the results from VORLAX to a wind tunnel study, I determined that the poor lateral directional stability and control coupling issues were foreseeable in the initial design.