Filtering by
- All Subjects: Computer vision
- Creators: Turaga, Pavan
- Creators: Computer Science and Engineering Program
Recent advancements in machine learning methods have allowed companies to develop advanced computer vision aided production lines that take advantage of the raw and labeled data captured by high-definition cameras mounted at vantage points in their factory floor. We experiment with two different methods of developing one such system to automatically track key components on a production line. By tracking the state of these key components using object detection we can accurately determine and report production line metrics like part arrival and start/stop times for key factory processes. We began by collecting and labeling raw image data from the cameras overlooking the factory floor. Using that data we trained two dedicated object detection models. Our training utilized transfer learning to start from a Faster R-CNN ResNet model trained on Microsoft’s COCO dataset. The first model we developed is a binary classifier that detects the state of a single object while the second model is a multiclass classifier that detects the state of two distinct objects on the factory floor. Both models achieved over 95% classification and localization accuracy on our test datasets. Having two additional classes did not affect the classification or localization accuracy of the multiclass model compared to the binary model.

Approximately 1\% of the total world population are stroke survivors, making it the most common neurological disorder. This increasing demand for rehabilitation facilities has been seen as a significant healthcare problem worldwide. The laborious and expensive process of visual monitoring by physical therapists has motivated my research to invent novel strategies to supplement therapy received in hospital in a home-setting. In this direction, I propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system.
The rapid technological advancements in computing and sensing has resulted in large amounts of data which requires powerful tools to analyze. In the recent past, topological data analysis methods have been investigated in various communities, and the work by Carlsson establishes that persistent homology can be used as a powerful topological data analysis approach for effectively analyzing large datasets. I have explored suitable topological data analysis methods and propose a framework for human activity analysis utilizing the same for applications such as action recognition.

Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort to acquire sufficient amount of labeled data for model learning. Second, existing attribute learning work for visual objects focuses primarily on images, with semantic analysis on videos left largely unexplored.
In this dissertation I conduct innovative research and propose novel approaches to tackling the aforementioned problems. In particular, I propose robust and accurate learning frameworks on both attribute ranking and prediction by exploring the correlation among multiple attributes and utilizing various types of label information. Furthermore, I propose a video-based skill coaching framework by extending attribute learning to the video domain for robust motion skill analysis. Experiments on various types of applications and datasets and comparisons with multiple state-of-the-art baseline approaches confirm that my proposed approaches can achieve significant performance improvements for the general attribute learning problem.





Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.
The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys.