Filtering by
- All Subjects: Electrical Engineering
- Creators: Bliss, Daniel
Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

existence of objects from which no direct information can be obtained
experimentally or observationally. A well known example is to
ascertain the existence of black holes of various masses in different
parts of the universe from indirect evidence, such as X-ray emissions.
In the field of complex networks, the problem of detecting
hidden nodes can be stated, as follows. Consider a network whose
topology is completely unknown but whose nodes consist of two types:
one accessible and another inaccessible from the outside world. The
accessible nodes can be observed or monitored, and it is assumed that time
series are available from each node in this group. The inaccessible
nodes are shielded from the outside and they are essentially
``hidden.'' The question is, based solely on the
available time series from the accessible nodes, can the existence and
locations of the hidden nodes be inferred? A completely data-driven,
compressive-sensing based method is developed to address this issue by utilizing
complex weighted networks of nonlinear oscillators, evolutionary game
and geospatial networks.
Both microbes and multicellular organisms actively regulate their cell
fate determination to cope with changing environments or to ensure
proper development. Here, the synthetic biology approaches are used to
engineer bistable gene networks to demonstrate that stochastic and
permanent cell fate determination can be achieved through initializing
gene regulatory networks (GRNs) at the boundary between dynamic
attractors. This is experimentally realized by linking a synthetic GRN
to a natural output of galactose metabolism regulation in yeast.
Combining mathematical modeling and flow cytometry, the
engineered systems are shown to be bistable and that inherent gene expression
stochasticity does not induce spontaneous state transitioning at
steady state. By interfacing rationally designed synthetic
GRNs with background gene regulation mechanisms, this work
investigates intricate properties of networks that illuminate possible
regulatory mechanisms for cell differentiation and development that
can be initiated from points of instability.

In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.
In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.
This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.





The proposed mapping is generalized to express information on a protein's sequence location, structure and function onto a highly localized three-dimensional (3-D) Gaussian waveform. In particular, as analysis of protein homology has shown that incorporating different kinds of information into an alignment process can yield more robust alignment results, a pairwise protein structure alignment method is proposed based on a joint similarity measure of multiple mapped protein attributes. The 3-D mapping allocates protein properties into distinct regions in the time-frequency plane in order to simplify the alignment process by including all relevant information into a single, highly customizable waveform. Simulations demonstrate the improved performance of the joint alignment approach to infer relationships between proteins, and they provide information on mutations that cause changes to both the sequence and structure of a protein.
In addition to the biology-based signal processing methods, a statistical method is considered that uses a physics-based model to improve processing performance. In particular, an externally developed physics-based model for sea clutter is examined when detecting a low radar cross-section target in heavy sea clutter. This novel model includes a process that generates random dynamic sea clutter based on the governing physics of water gravity and capillary waves and a finite-difference time-domain electromagnetics simulation process based on Maxwell's equations propagating the radar signal. A subspace clutter suppression detector is applied to remove dominant clutter eigenmodes, and its improved performance over matched filtering is demonstrated using simulations.

visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images.
The Canny edge detector is one of the most widely-used edge detection algorithms due to its superior performance in terms of SNR and edge localization and only one response to a single edge. In this work, we propose a mechanism to implement the Canny algorithm at the block level without any loss in edge detection performance as compared to the original frame-level Canny algorithm. The resulting block-based algorithm has significantly reduced memory requirements and can achieve a significantly reduced latency. Furthermore, the proposed algorithm can be easily integrated with other block-based image processing systems. In addition, quantitative evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the original frame-based algorithm, especially when noise is present in the images.
In the context of multi-temporal SAR images for earth monitoring applications, one critical issue is the detection of changes occurring after a natural or anthropic disaster. In this work, we propose a novel similarity measure for automatic change detection using a pair of SAR images
acquired at different times and apply it in both the spatial and wavelet domains. This measure is based on the evolution of the local statistics of the image between two dates. The local statistics are modeled as a Gaussian Mixture Model (GMM), which is more suitable and flexible to approximate the local distribution of the SAR image with distinct land-cover typologies. Tests on real datasets show that the proposed detectors outperform existing methods in terms of the quality of the similarity maps, which are assessed using the receiver operating characteristic (ROC) curves, and in terms of the total error rates of the final change detection maps. Furthermore, we proposed a new
similarity measure for automatic change detection based on a divisive normalization transform in order to reduce the computation complexity. Tests show that our proposed DNT-based change detector
exhibits competitive detection performance while achieving lower computational complexity as compared to previously suggested methods.