Matching Items (270)
Filtering by

Clear all filters

Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Not enough students are earning bachelor’s degrees in Computer Science, which is shocking as computing jobs are growing by the thousands (Zampa, 2016). These jobs have high-paying salaries and are not going to fade from the future any time soon, that is why the falling rates of computer science graduates

Not enough students are earning bachelor’s degrees in Computer Science, which is shocking as computing jobs are growing by the thousands (Zampa, 2016). These jobs have high-paying salaries and are not going to fade from the future any time soon, that is why the falling rates of computer science graduates are alarming. The working hypothesis on why so few college students major in computer science is that most think that it is too hard to learn (Wang, 2017). But I believe the real reason lies in that computer science is not an educational subject that is taught before university, which is too late for most students because by ages 12 to 13 (about seventh to eighth grade) they have decided that computer science concepts are “too difficult” for them to learn (Learning, 2022). Implementing a computer science-based education at an earlier age can possibly circumvent this seen development where students begin to lose confidence and doubt their abilities to learn computer science. This can be done easily by integrating computer science into academic subjects that are already taught in elementary schools such as science, math, and language arts as computer science uses logic, syntax, and other skills that are broadly applicable. Thus, I have created a introductory lesson plan for an elementary school class that incorporates learning how to code with robotics to promote learning computer science principles and destigmatize that it is “too hard” to learn in university.
ContributorsWong, Erika (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.
ContributorsMian, Sami T. (Author) / Collofello, James (Thesis director) / Chen, Yinong (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors called BioTacs, which include a hydrophone and a force electrode

Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors called BioTacs, which include a hydrophone and a force electrode array, were used to understand how grip force, contact angle, object texture, and slip direction may be encoded in the sensor data. Findings show that slip induced under conditions of high contact angles and grip forces resulted in significant changes in both AC and DC pressure magnitude and rate of change in pressure. Slip induced under conditions of low contact angles and grip forces resulted in significant changes in the rate of change in electrode impedance. Slip in the distal direction of a precision grip caused significant changes in pressure magnitude and rate of change in pressure, while slip in the radial direction of the wrist caused significant changes in the rate of change in electrode impedance. A strong relationship was established between slip direction and the rate of change in ratios of electrode impedance for radial and ulnar slip relative to the wrist. Consequently, establishing multiple thresholds or establishing a multivariate model may be a useful method for detecting and characterizing slip. Detecting slip for low contact angles could be done by monitoring electrode data, while detecting slip for high contact angles could be done by monitoring pressure data. Predicting slip in the distal direction could be done by monitoring pressure data, while predicting slip in the radial and ulnar directions could be done by monitoring electrode data.
ContributorsHsia, Albert (Author) / Santos, Veronica J (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen I (Committee member) / Arizona State University (Publisher)
Created2012
Description
There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles,

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity

for Unmanned Aerial Vehicles.

Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin’s curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate

these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.
ContributorsLin, Yucong (Author) / Saripalli, Srikanth (Thesis advisor) / Scowen, Paul (Committee member) / Fainekos, Georgios (Committee member) / Thangavelautham, Jekanthan (Committee member) / Youngbull, Cody (Committee member) / Arizona State University (Publisher)
Created2015
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability robotic-platforms for conducting FAME research. This is shown for two vehicle classes: (1) six differential-drive (DD) RC vehicles called Thunder Tumbler (DDTT) and (2) one rear-wheel drive (RWD) RC car called Ford F-150 (1:14 scale). Each DDTT-vehicle was augmented to provide a substantive suite of capabilities as summarized below (It should be noted, however, that only one DDTT-vehicle was augmented with an inertial measurement unit (IMU) and 2.4 GHz RC capability): (1) magnetic wheel-encoders/IMU for(dead-reckoning-based) inner-loop speed-control and outer-loop position-directional-control, (2) Arduino Uno microcontroller-board for encoder-based inner-loop speed-control and encoder-IMU-ultrasound-based outer-loop cruise-position-directional-separation-control, (3) Arduino motor-shield for inner-loop motor-speed-control, (4)Raspberry Pi II computer-board for demanding outer-loop vision-based cruise- position-directional-control, (5) Raspberry Pi 5MP camera for outer-loop cruise-position-directional-control (exploiting WiFi to send video back to laptop), (6) forward-pointing ultrasonic distance/rangefinder sensor for outer-loop separation-control, and (7) 2.4 GHz spread-spectrum RC capability to replace original 27/49 MHz RC. Each “enhanced”/ augmented DDTT-vehicle costs less than 􀀀175 but offers the capability of commercially available vehicles costing over 􀀀500. Both the Arduino and Raspberry are low-cost, well-supported (software wise) and easy-to-use. For the vehicle classes considered (i.e. DD, RWD), both kinematic and dynamical (planar xy) models are examined. Suitable nonlinear/linear-models are used to develop inner/outer-loopcontrol laws.

All demonstrations presented involve enhanced DDTT-vehicles; one the F-150; one a quadrotor. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) position-control along line (3) position-control along curve (4) planar (xy) Cartesian stabilization, (5) cruise-control along jagged line/curve, (6) vehicle-target spacing-control, (7) multi-robot spacing-control along line/curve, (8) tracking slowly-moving remote-controlled quadrotor, (9) avoiding obstacle while moving toward target, (10) RC F-150 followed by DDTT-vehicle. Hardware data/video is compared with, and corroborated by, model-based simulations. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
ContributorsLin, Zhenyu (Author) / Rodriguez, Armando Antonio (Committee member) / Si, Jennie (Committee member) / Berman, Spring Melody (Committee member) / Arizona State University (Publisher)
Created2015
Description
Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing its own goal to proactively support its human counterpart by inferring their goals. However there has not been any systematic evaluation on the accuracy of this claim.

In my thesis, I perform human factors analysis on effectiveness of such automated planning technologies for remote human-robot teaming. In the first part of my study, I perform an investigation on effectiveness of automated planning in remote human-robot teaming scenarios. In the second part of my study, I perform an investigation on effectiveness of a proactive robot assistant in remote human-robot teaming scenarios.

Both investigations are conducted in a simulated urban search and rescue (USAR) scenario where the human-robot teams are deployed during early phases of an emergency response to explore all areas of the disaster scene. I evaluate through both the studies, how effective is automated planning technology in helping the human-robot teams move closer to human-human teams. I utilize both objective measures (like accuracy and time spent on primary and secondary tasks, Robot Attention Demand, etc.) and a set of subjective Likert-scale questions (on situation awareness, immediacy etc.) to investigate the trade-offs between different types of remote human-robot teams. The results from both the studies seem to suggest that intelligent robots with automated planning capability and proactive support ability is welcomed in general.
ContributorsNarayanan, Vignesh (Author) / Kambhampati, Subbarao (Thesis advisor) / Zhang, Yu (Thesis advisor) / Cooke, Nancy J. (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
Description
Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer

Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer vision,

robotics, reconnaissance, astrophotography, surveillance and automotive applications.

The images captured from such cameras can be corrected for their distortion if the

cameras are calibrated and the distortion function is determined. Calibration also allows

fisheye cameras to be used in tasks involving metric scene measurement, metric

scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.

This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
ContributorsKashyap Takmul Purushothama Raju, Vinay (Author) / Karam, Lina (Thesis advisor) / Turaga, Pavan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
Description
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
ContributorsZhong, Xuan (Author) / Yost, William (Thesis advisor) / Zhou, Yi (Committee member) / Dorman, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015