Matching Items (23)
Filtering by

Clear all filters

Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
Description

Exploration of icy moons in the search for extra-terrestrial life is becoming a major focus in the NASA community. As such, the Exobiology Extant Life Surveyor (EELS) robot has been proposed to survey Saturn's Moon, Enceladus. EELS is a snake-like robot that will use helically grousered wheels to propel itself

Exploration of icy moons in the search for extra-terrestrial life is becoming a major focus in the NASA community. As such, the Exobiology Extant Life Surveyor (EELS) robot has been proposed to survey Saturn's Moon, Enceladus. EELS is a snake-like robot that will use helically grousered wheels to propel itself forward through the complex terrains of Enceladus. This moon's surface is composed of a mixture of snow and ice. Mobility research in these types of terrains is still under-explored, but must be done for the EELS robot to function. As such, this thesis will focus on the methodologies required to effectively simulate wheel interaction with cohesive media from a computational perspective. Three simulation tools will be briefly discussed: COMSOL Multiphysics, EDEM-ADAMS, and projectChrono. Next, the contact models used in projectChrono will be discussed and the methodology used to implement a custom Johnson Kendall Roberts (JKR) collision model will be explained. Finally, initial results from a cone penetrometer test in projectChrono will be shown. Qualitatively, the final simulations look correct, and further work is being done to quantitatively validate them as well as simulate more complex screw geometries.

ContributorsMick, Darwin (Author) / Marvi, Hamidreza (Thesis director) / Das, Jnaneshwar (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description

Medical technology, while improving greatly with time, often requires a sacrifice in the form of invasiveness in order to reach target areas within the body, such as the brain, liver, or heart. This project aims to utilize a magnetic, flexible needle design to reach these target areas for surgery and

Medical technology, while improving greatly with time, often requires a sacrifice in the form of invasiveness in order to reach target areas within the body, such as the brain, liver, or heart. This project aims to utilize a magnetic, flexible needle design to reach these target areas for surgery and drug administration with minimal invasiveness. The metallic needle tip is guided by an external system consisting of a UR16e robotic arm with a magnetic end effector. As a longer running project, the primary focuses of this research are to develop the system by which the robotic arm guides the needle, investigate and implement fiber Bragg grating sensors as a means of real time path imaging and feedback, and conduct preliminary tests to validate that the needle is accurately controlled by the robotic arm. Testing with different mediums such as gel or phantom tissue, and eventually animal experiments will follow in a future publication due to time constraints.

ContributorsNienhouse, Lucas (Author) / Marvi, Hamidreza (Thesis director) / Lee, Hyunglae (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

This project compared two optimization-based formulations for solving multi-robot task allocation problems with tether constraints. The first approach, or the ”Iterative Method,” used the common multiple traveling salesman (mTSP) formulation and implemented an algorithm over the formulation to filter out solutions that failed to satisfy the tether constraint. The second

This project compared two optimization-based formulations for solving multi-robot task allocation problems with tether constraints. The first approach, or the ”Iterative Method,” used the common multiple traveling salesman (mTSP) formulation and implemented an algorithm over the formulation to filter out solutions that failed to satisfy the tether constraint. The second approach, named the ”Timing Formulation,” involved constructing a new formulation specifically designed account for robot timings, including the tether constraint in the formulation itself. The approaches were tested against each other in 10-city simulations and the results were compared. The Iterative Method could provide answers in 1- and 2-norm variations quickly, but its mTSP model formulation broke down and became infeasible at low city numbers. The 1-norm Timing Formulation quickly and reliably produced solutions but faced high computation times in its 2-norm manifestation. Ultimately, while the Timing Formulation is a more optimal method for solving tether-constrained task allocation problems, its reliance on the 1-norm for low computation times causes it to sacrifice some realism.

ContributorsGoodwin, Walter (Author) / Yong, Sze Zheng (Thesis director) / Grewal, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal control approach are used to design a trajectory controller for the system. Results are simulated for a single drone and the three drone system both without and with payload.

ContributorsHayden, Alexander (Author) / Grewal, Anoop (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
Description

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and constraints of a human arm wherever possible. The analysis of this final result determines if the kinetic chain effect is present in the theoretically optimized solution. This is done by comparing it with an intuitively optimized system based on throwing motion derived from the forehand throw in Ultimate frisbee.

ContributorsHartmann, Julien (Author) / Grewal, Anoop (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description
In order to refine autonomous exploratory movement planning schemes, an approach must be developed that accounts for valuable information other than that gained from map filling. To this end, the goal of this thesis is divided into two parts. The first is to develop a technique for categorizing objects detected

In order to refine autonomous exploratory movement planning schemes, an approach must be developed that accounts for valuable information other than that gained from map filling. To this end, the goal of this thesis is divided into two parts. The first is to develop a technique for categorizing objects detected by an autonomous exploratory robot and assigning them a score based on their interest value. The second is an attempt to develop a method of integrating this technique into a navigation algorithm in order to refine the movements of a robot or robots to maximize the efficiency of information gain. The intention of both of these components is to provide a method of refining the navigation scheme applied to autonomous exploring robots and maximize the amount of information they can gather in deployments where they face significant resource or functionality constraints. To this end this project is divided into two main sections: a shape-matching technique and a simulation in in which to implement this technique. The first section was accomplished by combining concepts from information theory, principal component analysis, and the eigenfaces algorithm to create an effective matching technique. The second was created with inspiration from existing navigation algorithms. Once these components were determined to be functional, a testing regime was applied to determine their capabilities. The testing regime was also divided into two parts. The tests applied to the matching technique were first to demonstrate that it functions under ideal conditions. After testing was conducted under ideal conditions, the technique was tested under non-ideal conditions. Additional tests were run to determine how the system responded to changes in the coefficients and equations that govern its operation. Similarly, the simulation component was initially tested under normal conditions to determine the base effectiveness of the approach. After these tests were conducted, alternative conditions were tested to evaluate the effects of modifying the implementation technique. The results of these tests indicated a few things. The first series of tests confirmed that the matching technique functions as expected under ideal conditions. The second series of tests determined that the matching element is effective for a reasonable range of variations and non-ideal conditions. The third series of tests showed that changing the functional coefficients of the matching technique can help tune the technique to different conditions. The fourth series of tests demonstrated that the basic concept of the implementation technique makes sense. The final series of tests demonstrated that modifying the implementation method is at least somewhat effective and that modifications to it can be used to specifically tailor the implementation to a method. Overall the results indicate that the stated goals of the project were accomplished successfully.
ContributorsFleetwood, Garrett Clark (Author) / Thanga, Jekan (Thesis director) / Berman, Spring (Committee member) / Middleton, James (Committee member) / Economics Program in CLAS (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered

The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered exoskeletons have the potential to be used directly in physical therapy or indirectly in research pursuing more effective rehabilitation methods. This paper presents the LiTREAD, a lightweight three degree-of-freedom robotic exoskeletal ankle device. This novel robotic system is designed to be worn on a user's leg and actuate the foot position during treadmill studies. The robot's sagittal plane actuation is complemented by passive virtual axis systems in the frontal and transverse planes. Together, these degrees of freedom allow the device to approximate the full range of motion of the ankle. The virtual axis mechanisms feature locking configurations that will allow the effect of these degrees of freedom on gait dynamics to be studied. Based on a kinematic analysis of the robot's actuation and geometry, it is expected to meet and exceed its torque and speed targets, respectively. The device will fit either leg of a range of subject sizes, and is expected to weigh just 1.3 kg (2.9 lb.). These features and characteristics are designed to minimize the robot's interference with the natural walking motion. Pending validation studies confirming that all design criteria have been met, the LiTREAD prototype that has been constructed will be utilized in various experiments investigating properties of the ankle such as its mechanical impedance. It is hoped that the LiTREAD will yield valuable data that will expand our knowledge of the ankle and aid in the design of future lower-extremity devices.
ContributorsCook, Andrew James Henry (Author) / Lee, Hyunglae (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation

The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation speeds and two levels of rotation resistance were used to investigate tactile cues during knob rotation. In the future, this multidigit task can be generalized to similar rotational tasks, such as opening a bottle or turning a doorknob.
ContributorsChalla, Santhi Priya (Author) / Santos, Veronica (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
Description
The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away

The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away at the surface of the water. These vehicles all require some method for transmitting power to the surrounding water to interact with their environment, such as in thrusters for propulsion or a claw for manipulation. Many commercially available thrusters, for example, use shaft seals to transfer power through a waterproof housing to the adjacent water. Even though this works excellently for many of them, I propose that having a static seal and transmitting the power from the motor to the shaft through magnetic coupling will allow a much greater depth at which they are waterproof to be achieved. In addition, it will not require the chronic maintenance that dynamic shaft seals entail, making long scientific endeavors possible.
ContributorsHouda, Jonathon Jacob (Author) / Foy, Joseph (Thesis director) / Zhu, Haolin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05