Matching Items (16)
Filtering by

Clear all filters

Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Not enough students are earning bachelor’s degrees in Computer Science, which is shocking as computing jobs are growing by the thousands (Zampa, 2016). These jobs have high-paying salaries and are not going to fade from the future any time soon, that is why the falling rates of computer science graduates

Not enough students are earning bachelor’s degrees in Computer Science, which is shocking as computing jobs are growing by the thousands (Zampa, 2016). These jobs have high-paying salaries and are not going to fade from the future any time soon, that is why the falling rates of computer science graduates are alarming. The working hypothesis on why so few college students major in computer science is that most think that it is too hard to learn (Wang, 2017). But I believe the real reason lies in that computer science is not an educational subject that is taught before university, which is too late for most students because by ages 12 to 13 (about seventh to eighth grade) they have decided that computer science concepts are “too difficult” for them to learn (Learning, 2022). Implementing a computer science-based education at an earlier age can possibly circumvent this seen development where students begin to lose confidence and doubt their abilities to learn computer science. This can be done easily by integrating computer science into academic subjects that are already taught in elementary schools such as science, math, and language arts as computer science uses logic, syntax, and other skills that are broadly applicable. Thus, I have created a introductory lesson plan for an elementary school class that incorporates learning how to code with robotics to promote learning computer science principles and destigmatize that it is “too hard” to learn in university.
ContributorsWong, Erika (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.
ContributorsMian, Sami T. (Author) / Collofello, James (Thesis director) / Chen, Yinong (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
Description
As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do.

As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do.

The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, conditions and avoidance. That is, the following general questions are addressed:

* What cause of the given mission is unrealizable?

* Is there any other feasible mission that is close to the given one?

In order to answer these questions, the LTL Revision Problem is applied and it is formulated as a graph search problem. It is shown that in general the problem is NP-Complete. Hence, it is proved that the heuristic algorihtm has 2-approximation bound in some cases. This problem, then, is extended to two different versions: one is for the weighted transition system and another is for the specification under quantitative preference. Next, a follow up question is addressed:

* How can an LTL specified mission be scaled up to multiple robots operating in confined environments?

The Cooperative Multi-agent Planning Problem is addressed by borrowing a technique from cooperative pathfinding problems in discrete grid environments. Since centralized planning for multi-robot systems is computationally challenging and easily results in state space explosion, a distributed planning approach is provided through agent coupling and de-coupling.

In addition, in order to make such robot missions work in the real world, robots should take actions in the continuous physical world. Hence, in the second part of this thesis, the resulting motion planning problems is addressed for non-holonomic robots.

That is, it is devoted to autonomous vehicles’ motion planning in challenging environments such as rural, semi-structured roads. This planning problem is solved with an on-the-fly hierarchical approach, using a pre-computed lattice planner. It is also proved that the proposed algorithm guarantees resolution-completeness in such demanding environments. Finally, possible extensions are discussed.
ContributorsKim, Kangjin (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Lee, Joohyung (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2019
Description
For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.
ContributorsCohn, Riley (Co-author) / Petty, Charles (Co-author) / Ben Amor, Hani (Thesis director) / Yong, Sze Zheng (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
The goal of this project is to use an open-source solution to implement a drone Cyber-Physical System that can fly autonomously and accurately. The proof-of-concept to analyze the drone's flight capabilities is to fly in a pattern corresponding to the outline of an image, a process that requires both stability

The goal of this project is to use an open-source solution to implement a drone Cyber-Physical System that can fly autonomously and accurately. The proof-of-concept to analyze the drone's flight capabilities is to fly in a pattern corresponding to the outline of an image, a process that requires both stability and precision to accurately depict the image. In this project, we found that building a Cyber-Physical System is difficult because of the tedious and complex nature of designing and testing the hardware and software solutions of this system. Furthermore, we reflect on the difficulties that arose from using open-source hardware and software.
ContributorsDedinsky, Rachel (Co-author) / Lubbers, Harrison James (Co-author) / Shrivastava, Aviral (Thesis director) / Dougherty, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
In this update to the ESPBot, we have introduced new libraries for a small OLED display and a beeper. This functionality can be easily expanded to multiple beepers and displays, but requires more GPIO pins, or for the user to not use some of the infrared sensors or the ultrasonic

In this update to the ESPBot, we have introduced new libraries for a small OLED display and a beeper. This functionality can be easily expanded to multiple beepers and displays, but requires more GPIO pins, or for the user to not use some of the infrared sensors or the ultrasonic sensor. We have also relocated some of the pins. The display can be updated to display 1 of 4 predefined shapes, or to display user-defined text. New shapes can be added by defining new methods within display.ino and calling the appropriate functions while parsing the JSON data in viple.ino. The beeper can be controlled by user-defined input to play any frequency for any amount of time. There is also a function added to play the happy birthday song. More songs can be added by defining new methods within beeper.ino and calling the appropriate functions while parsing the JSON data in viple.ino. More functionality can be added to allow the user to input a list of frequencies along with a list of time so the user can define their own songs or sequences on the fly.
ContributorsWelfert, Monica Michelle (Co-author) / Nguyen, Van (Co-author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12