Matching Items (36)
Filtering by

Clear all filters

Description

Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing

Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing (since many assays require a minimum tumor content to report variants at the limit of detection) may all be improved with more accurate and reproducible estimates of tumor content. Currently, tumor percentages of samples submitted for molecular testing are estimated by visual examination of Hematoxylin and Eosin (H&E) stained tissue slides under the microscope by pathologists. These estimations can be automated, expedited, and rendered more accurate by applying machine learning methods on digital whole slide images (WSI).

ContributorsCirelli, Claire (Author) / Yang, Yezhou (Thesis director) / Yalim, Jason (Committee member) / Velu, Priya (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as

This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as size, labeling, and format of the training data. The findings suggest that reducing the training dataset size can lead to a decrease in image coherence, indicating that AI models get worse as the training dataset gets smaller. Moreover, the study makes surprising discoveries regarding AI image generation models that are trained on highly varied datasets. In addition, the study involves a survey in which people were asked to rate the subjective realism of the generated images on a scale ranging from 1 to 5 as well as sorting the images into their respective classes. The findings of this study emphasize the importance of considering dataset variance and size as a critical aspect of improving image generation models as well as the implications of using AI technology in the future.

ContributorsPunyamurthula, Rushil (Author) / Carter, Lynn (Thesis director) / Sarmento, Rick (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized

Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized images of breast tissue samples, called fine-needle aspirates. Breast cancer diagnosis typically involves a combination of mammography, ultrasound, and biopsy. However, machine learning algorithms can assist in the detection and diagnosis of breast cancer by analyzing large amounts of data and identifying patterns that may not be discernible to the human eye. By using these algorithms, healthcare professionals can potentially detect breast cancer at an earlier stage, leading to more effective treatment and better patient outcomes. The results showed that the gradient boosting classifier performed the best, achieving an accuracy of 96% on the test set. This indicates that this algorithm can be a useful tool for healthcare professionals in the early detection and diagnosis of breast cancer, potentially leading to improved patient outcomes.

ContributorsMallya, Aatmik (Author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
This thesis investigates the quality and usefulness of "DeepDEMs" from Moon and Mars images, which are Digital Elevation Models (DEMs) created using deep learning from single optical images. High-resolution DEMs of Moon and Mars are increasingly critical for gaining insights into the slope and the elevation of the terrain in

This thesis investigates the quality and usefulness of "DeepDEMs" from Moon and Mars images, which are Digital Elevation Models (DEMs) created using deep learning from single optical images. High-resolution DEMs of Moon and Mars are increasingly critical for gaining insights into the slope and the elevation of the terrain in the region which helps in identifying the landing sites of possible manned missions and rovers. However, many locations of interest to scientists who use remote sensing to study the Earth or other planetary bodies have only visible image data coverage, and not repeated stereo image coverage or other data collected specifically for DEM generation. Thus, Earth and planetary scientists, geographers, and other academics want DEMs in many locations where no data resources (repeat coverage or intensive remote sensing campaigns) have been assigned for geomorphic or topographic study. One specific use for deep learning-generated terrain models would be to assess probable sites in the lunar south polar area for NASA's future Artemis III mission which aims to return people to the lunar surface. While conventional techniques (for example, needing two stereo pictures from satellites for photogrammetry) work well, this high-resolution data only covers a small portion of the planets. Furthermore, older approaches need lengthy processing durations as well as human calibration and tweaking to achieve high-quality DEMs. To address the coverage and processing time concerns, we evaluated deep learning algorithms for creating DEMs of the Moon and Mars' surfaces. We explore how the findings of this study may be used to create elevation models for planetary mapping in the future using automated methods.
ContributorsJain, Rini (Author) / Rastogi, Anant (Co-author) / Kerner, Hannah (Thesis director) / Adler, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor)
Created2024-05
Description
As the use of Artificial Intelligence (AI) continues to expand and improve across numerous industries, the success with which it has been integrated into the medical sector stands out. Physicians and researchers now utilize AI in many situations. In particular, advancements within the field of detection AI have had a

As the use of Artificial Intelligence (AI) continues to expand and improve across numerous industries, the success with which it has been integrated into the medical sector stands out. Physicians and researchers now utilize AI in many situations. In particular, advancements within the field of detection AI have had a significant impact on the diagnosis and treatment of scoliosis. Detection AI has been developed to recognize important features within an image, such as malignant tumors in adults. For a scoliosis patient, a detection model can manipulate radiograph images to create masks and highlight important features that could be missed by the human eye, such as minute changes in a cell, and create binary masks of a spine. Using a popular convolution neural network (CNN) to examine datasets of scoliosis x-rays, provided by Hanger Inc [6], this paper examines the capabilities of machine learning to effectively differentiate the spine from other bones in x-ray imagery and to identify scoliosis in affected patients. Based on the results of the project, several issues were discovered that, if resolved, could improve the overall accuracy of the model, which would allow it to potentially find its own place within medical workflows to expedite the scoliosis design process.
ContributorsCooney, Sloan (Author) / Kerner, Hannah (Thesis director) / Clark, Geoffrey (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.
ContributorsEusebio, Jose Miguel Ang (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or store. This trend inevitability calls for the need for offloading

The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or store. This trend inevitability calls for the need for offloading IoT data processing to a decentralized edge computing infrastructure. On the other hand, deep-learning-based applications gain great progress by taking advantage of heavy centralized computing resources for training large models to fit increasingly complicated tasks. Even though large-scale deep learning models perform well in terms of accuracy, their high computational complexity makes it impossible to offload them onto edge devices for real-time inference and timely response. To enable timely IoT services on edge devices, this dissertation addresses the challenge from two perspectives. On the hardware side, a new field-programmable gate array (FPGA)-based framework for binary neural network and an application-specific integrated circuit (ASIC) accelerator for natural scene text interpretation are proposed, with the awareness of the computing resources and power constraint on edge. On the algorithm side, this work presents both the methodology of building more compact models and finding better computation-accuracy trade-off for existing models.
ContributorsLi, Yixing (Author) / Ren, Fengbo (Thesis advisor) / Vrudhula, Sarma (Committee member) / Seo, Jae-Sun (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2021
Description
There is intense interest in adopting computer-aided diagnosis (CAD) systems, particularly those developed based on deep learning algorithms, for applications in a number of medical specialties. However, success of these CAD systems relies heavily on large annotated datasets; otherwise, deep learning often results in algorithms that perform poorly and lack

There is intense interest in adopting computer-aided diagnosis (CAD) systems, particularly those developed based on deep learning algorithms, for applications in a number of medical specialties. However, success of these CAD systems relies heavily on large annotated datasets; otherwise, deep learning often results in algorithms that perform poorly and lack generalizability. Therefore, this dissertation seeks to address this critical problem: How to develop efficient and effective deep learning algorithms for medical applications where large annotated datasets are unavailable. In doing so, we have outlined three specific aims: (1) acquiring necessary annotations efficiently from human experts; (2) utilizing existing annotations effectively from advanced architecture; and (3) extracting generic knowledge directly from unannotated images. Our extensive experiments indicate that, with a small part of the dataset annotated, the developed deep learning methods can match, or even outperform those that require annotating the entire dataset. The last part of this dissertation presents the importance and application of imaging in healthcare, elaborating on how the developed techniques can impact several key facets of the CAD system for detecting pulmonary embolism. Further research is necessary to determine the feasibility of applying these advanced deep learning technologies in clinical practice, particularly when annotation is limited. Progress in this area has the potential to enable deep learning algorithms to generalize to real clinical data and eventually allow CAD systems to be employed in clinical medicine at the point of care.
ContributorsZhou, Zongwei (Author) / Liang, Jianming (Thesis advisor) / Shortliffe, Edward H (Committee member) / Greenes, Robert A (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2021
Description
With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to a small one (termed student) in order to improve the performance of the latter. This approach seems to be promising for learning on edge devices, but a thorough investigation on its effectiveness is lacking.

The purpose of this work is to provide an extensive study on the performance (both in terms of accuracy and convergence speed) of knowledge transfer, considering different student-teacher architectures, datasets and different techniques for transferring knowledge from teacher to student.

A good performance improvement is obtained by transferring knowledge from both the intermediate layers and last layer of the teacher to a shallower student. But other architectures and transfer techniques do not fare so well and some of them even lead to negative performance impact. For example, a smaller and shorter network, trained with knowledge transfer on Caltech 101 achieved a significant improvement of 7.36\% in the accuracy and converges 16 times faster compared to the same network trained without knowledge transfer. On the other hand, smaller network which is thinner than the teacher network performed worse with an accuracy drop of 9.48\% on Caltech 101, even with utilization of knowledge transfer.
ContributorsSistla, Ragini (Author) / Zhao, Ming (Thesis advisor, Committee member) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
ContributorsDodge, Samuel Fuller (Author) / Karam, Lina (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2018