Filtering by
- All Subjects: Deep learning
- Creators: Computer Science and Engineering Program
- Creators: Panchanathan, Sethuraman
Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing (since many assays require a minimum tumor content to report variants at the limit of detection) may all be improved with more accurate and reproducible estimates of tumor content. Currently, tumor percentages of samples submitted for molecular testing are estimated by visual examination of Hematoxylin and Eosin (H&E) stained tissue slides under the microscope by pathologists. These estimations can be automated, expedited, and rendered more accurate by applying machine learning methods on digital whole slide images (WSI).
This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as size, labeling, and format of the training data. The findings suggest that reducing the training dataset size can lead to a decrease in image coherence, indicating that AI models get worse as the training dataset gets smaller. Moreover, the study makes surprising discoveries regarding AI image generation models that are trained on highly varied datasets. In addition, the study involves a survey in which people were asked to rate the subjective realism of the generated images on a scale ranging from 1 to 5 as well as sorting the images into their respective classes. The findings of this study emphasize the importance of considering dataset variance and size as a critical aspect of improving image generation models as well as the implications of using AI technology in the future.
Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized images of breast tissue samples, called fine-needle aspirates. Breast cancer diagnosis typically involves a combination of mammography, ultrasound, and biopsy. However, machine learning algorithms can assist in the detection and diagnosis of breast cancer by analyzing large amounts of data and identifying patterns that may not be discernible to the human eye. By using these algorithms, healthcare professionals can potentially detect breast cancer at an earlier stage, leading to more effective treatment and better patient outcomes. The results showed that the gradient boosting classifier performed the best, achieving an accuracy of 96% on the test set. This indicates that this algorithm can be a useful tool for healthcare professionals in the early detection and diagnosis of breast cancer, potentially leading to improved patient outcomes.

text, etc. into feature representations that are convenient for computational process-
ing. Deep neural networks have proven to be very efficient feature extractors for a
variety of machine learning tasks. Generative models based on deep neural networks
introduce constraints on the feature space to learn transferable and disentangled rep-
resentations. Transferable feature representations help in training machine learning
models that are robust across different distributions of data. For example, with the
application of transferable features in domain adaptation, models trained on a source
distribution can be applied to a data from a target distribution even though the dis-
tributions may be different. In style transfer and image-to-image translation, disen-
tangled representations allow for the separation of style and content when translating
images.
This thesis examines learning transferable data representations in novel deep gen-
erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-
ial methods and cross-domain weight sharing in a neural network to extract trans-
ferable representations. These transferable interpretations can then be decoded into
the original image or a similar image in another domain. The Explicit Disentangling
Network (EDN) utilizes generative methods to disentangle images into their core at-
tributes and then segments sets of related attributes. The EDN can separate these
attributes by controlling the ow of information using a novel combination of losses
and network architecture. This separation of attributes allows precise modi_cations
to speci_c components of the data representation, boosting the performance of ma-
chine learning tasks. The effectiveness of these models is evaluated across domain
adaptation, style transfer, and image-to-image translation tasks.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.

This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.
The models were tested across multiple computer vision datasets for domain adaptation.
The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.
