Filtering by
- All Subjects: Machine learning
- Creators: Arizona State University
- Creators: Computer Science and Engineering Program
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.
Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.
In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of six language models<br/>demonstrating their effectiveness in seven tweet classification tasks. I explain the successes and<br/>challenges in reproducing these results and provide analysis for the future implications of fake<br/>news research.
Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.
Machine learning is a rapidly growing field, with no doubt in part due to its countless applications to other fields, including pedagogy and the creation of computer-aided tutoring systems. To extend the functionality of FACT, an automated teaching assistant, we want to predict, using metadata produced by student activity, whether a student is capable of fixing their own mistakes. Logs were collected from previous FACT trials with middle school math teachers and students. The data was converted to time series sequences for deep learning, and ordinary features were extracted for statistical machine learning. Ultimately, deep learning models attained an accuracy of 60%, while tree-based methods attained an accuracy of 65%, showing that some correlation, although small, exists between how a student fixes their mistakes and whether their correction is correct.
Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing (since many assays require a minimum tumor content to report variants at the limit of detection) may all be improved with more accurate and reproducible estimates of tumor content. Currently, tumor percentages of samples submitted for molecular testing are estimated by visual examination of Hematoxylin and Eosin (H&E) stained tissue slides under the microscope by pathologists. These estimations can be automated, expedited, and rendered more accurate by applying machine learning methods on digital whole slide images (WSI).
As threats emerge, change, and grow, the life of a police officer continues to intensify. To help support police training curriculums and police cadets through this critical career juncture, this study proposes a state of the art approach to stress prediction and intervention through wearable devices and machine learning models. As an integral first step of a larger study, the goal of this research is to provide relevant information to machine learning models to formulate a correlation between stress and police officers’ physiological responses on and off on the job. Fitbit devices were leveraged for data collection and were complemented with a custom built Fitbit application, called StressManager, and study dashboard, termed StressWatch. This analysis uses data collected from 15 training cadets at the Phoenix Police Regional Training Academy over a 13 week span. Close collaboration with these participants was essential; the quality of data collection relied on consistent “syncing” and troubleshooting of the Fitbit devices. After the data were collected and cleaned, features related to steps, calories, movement, location, and heart rate were extracted from the Fitbit API and other supplemental resources and passed through to empirically chosen machine learning models. From the results of these models, we formulate that events of increased intensity combined with physiological spikes contribute to the overall stress perception of a police training cadet