Filtering by
- All Subjects: Machine learning
- Creators: Arizona State University
- Creators: Electrical Engineering Program
The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz standards. A total of 200 unique datasets were produced and tested, resulting in the prediction of nearly 51 million chords. A note-prediction accuracy of 82.1% and a chord-prediction accuracy of 34.5% were achieved across all datasets. Methods of data representation that were rooted in valid music theory frameworks were found to increase the efficacy of harmonic prediction by up to 6%. Optimal LSTM input sizes were also determined for each method of data representation.
The increasing demand for clean energy solutions requires more than just expansion, but also improvements in the efficiency of renewable sources, such as solar. This requires analytics for each panel regarding voltage, current, temperature, and irradiance. This project involves the development of machine learning algorithms along with a data logger for the purpose of photovoltaic (PV) monitoring and control. Machine learning is used for fault classification. Once a fault is detected, the system can change its reconfiguration to minimize the power losses. Accuracy in the fault detection was demonstrated to be at a level over 90% and topology reconfiguration showed to increase power output by as much as 5%.
The stability of cheerleading stunts is crucial to athlete safety and team success. Consistency in stunt technique contributes to success in stunting skills, giving a team the tools to win competitions. Increased stunt technique reduces the chances of falls and the severity of those falls. Proper technique also prevents injuries caused by improper positions that place pressure on the lower back and shoulders. Bases must maintain strong technique with proper lines of support in order to maximize stunt stability. Through exploration of the EmbeddedML system, involving a neural network implemented using a SensorTile, cheerleading motions can be successfully classified. Using this system, it is possible to identify motions that result in both weak and injurious positions almost instantly. By alerting athletes to these incorrect motions, improper stunt technique can be corrected quickly and without the involvement of a coach. This automated technique correction would be incredibly beneficial to the sport of competitive cheerleading
This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.
This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.
In wireless communication systems, the process of data transmission includes the estimation of channels. Implementing machine learning in this process can reduce the amount of time it takes to estimate channels, thus, resulting in an increase of the system’s transmission throughput. This maximizes the performance of applications relating to device-to-device communications and 5G systems. However, applying machine learning algorithms to multi-base-station systems is not well understood in literature, which is the focus of this thesis.
We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite and (ii) optical images for the same area as the SAR images collected from the Sentinel-2 satellite. We utilize classical neural networks to classify four classes of images. We then use Quantum Convolutional Neural Networks and deep learning techniques to take advantage of machine learning to help the system train, learn, and identify at a higher classification accuracy. A hybrid Quantum-classical model that is trained on the Sentinel1-2 dataset is proposed, and the performance is then compared against the classical in terms of classification accuracy.
This study measure the effect of temperature on a neural network's ability to detect and classify solar panel faults. It's well known that temperature negatively affects the power output of solar panels. This has consequences on their output data and our ability to distinguish between conditions via machine learning.