Matching Items (16)
Filtering by

Clear all filters

Description

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and

The role of technology in shaping modern society has become increasingly important in the context of current democratic politics, especially when examined through the lens of social media. Twitter is a prominent social media platform used as a political medium, contributing to political movements such as #OccupyWallStreet, #MeToo, and #BlackLivesMatter. Using the #BlackLivesMatter movement as an illustrative case to establish patterns in Twitter usage, this thesis aims to answer the question “to what extent is Twitter an accurate representation of “real life” in terms of performative activism and user engagement?” The discussion of Twitter is contextualized by research on Twitter’s use in politics, both as a mobilizing force and potential to divide and mislead. Using intervals of time between 2014 – 2020, Twitter data containing #BlackLivesMatter is collected and analyzed. The discussion of findings centers around the role of performative activism in social mobilization on twitter. The analysis shows patterns in the data that indicates performative activism can skew the real picture of civic engagement, which can impact the way in which public opinion affects future public policy and mobilization.

ContributorsTutelman, Laura (Author) / Voorhees, Matthew (Thesis director) / Kawski, Matthias (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Since the onset of the COVID-19 pandemic, the world has been turned upside down. People everywhere are recommended to self-isolate and social distance to limit the spread of the deadly virus. Older adults specifically are being forced into isolation because they are at the highest risk for severe illness—illness that

Since the onset of the COVID-19 pandemic, the world has been turned upside down. People everywhere are recommended to self-isolate and social distance to limit the spread of the deadly virus. Older adults specifically are being forced into isolation because they are at the highest risk for severe illness—illness that can result in hospitalization, intensive care, or even death. But this isolation is not new. Even before COVID-19, the older adult population has been suffering through a social isolation epidemic. And now, with social distancing measures in place, even more adults are being socially isolated to remain safe and healthy. But when individuals are isolated for long periods of time and no longer have an active social network to connect with, this social isolation can become harmful. Social isolation is known to increase the risk of cardiovascular disease, obesity, and stroke, and it is associated with anxiety, depression, and cognitive decline. Furthermore, the risk of premature death from any cause increases because of social isolation. With all these negative consequences, it is crucial that we confront the toll that COVID-19 countermeasures have taken on older adults and look for ways to prevent social isolation. Venture Together, a multi-user social media platform designed for older adults, attempts to do just this and more.
ContributorsHouchins, Michelle (Author) / Doebbeling, Bradley (Thesis director) / Mejía, Mauricio (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
Description

Bad actor reporting has recently grown in popularity as an effective method for social media attacks and harassment, but many mitigation strategies have yet to be investigated. In this study, we created a simulated social media environment of 500,000 users, and let those users create and review a number of

Bad actor reporting has recently grown in popularity as an effective method for social media attacks and harassment, but many mitigation strategies have yet to be investigated. In this study, we created a simulated social media environment of 500,000 users, and let those users create and review a number of posts. We then created four different post-removal algorithms to analyze the simulation, each algorithm building on previous ones, and evaluated them based on their accuracy and effectiveness at removing malicious posts. This thesis work concludes that a trust-reward structure within user report systems is the most effective strategy for removing malicious content while minimizing the removal of genuine content. This thesis also discusses how the structure can be further enhanced to accommodate real-world data and provide a viable solution for reducing bad actor online activity as a whole.

ContributorsYang, Lucas (Author) / Atkinson, Robert (Thesis director) / O'Neil, Erica (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
In the current digital marketplace, local small businesses and consumers encounter challenges in establishing an online presence and discovering trustworthy services respectively. The Loki mobile application, presented in this work, aims to reduce the disconnect between these parties through specific features and tools in a mobile application that address each

In the current digital marketplace, local small businesses and consumers encounter challenges in establishing an online presence and discovering trustworthy services respectively. The Loki mobile application, presented in this work, aims to reduce the disconnect between these parties through specific features and tools in a mobile application that address each party’s concerns. Small businesses and individual service providers such as barbershops, private tutors, babysitters, and house cleaners, often face difficulties garnering attention from their communities and executing social media marketing campaigns with limited financial and human resources. Consumers struggle to filter through the abundance or lack of online information about businesses to find reliable reviews and choose where to acquire their services. The Loki mobile application intends to serve as a forum for community-driven reviews through which businesses build their public image and enhance the visibility of their services. This comprehensive system encourages verified reviews that foster consumer trust and promote local economic growth. For an application of this complexity to be developed, the creation of aesthetic and intuitive user interfaces in frontend development is significant to the success of the platform’s mission. However, constructing a scalable, maintainable, and secure backend infrastructure is fundamental to transforming these static pages into operational interfaces through which the users can interact and reap the benefits. The intentional decisions for technologies and frameworks selected for the application development and design choices relating to the organization and structure of routes, entities, and controllers contributed to achieving this goal. Next, performance testing was conducted in a local development environment by simulating heavy-load conditions to determine whether the backend server could handle increased traffic without impacting response times and error rates. The limitations that were identified include the steps that can be taken for performance optimization and the need for cloud-based solutions before the application is pushed to production. The lessons learned from the initial performance testing emphasize the importance of building a backend infrastructure that is scalable and maintainable to meet the dynamic needs of small businesses and consumers. Future efforts for the Loki platform involve thoroughly evaluating the application’s functionalities and user experience and testing the application against the same performance metrics before being released to the app stores. Additionally, the development team of the Loki mobile application will prioritize refining existing features and introducing new ones based on real user feedback.
ContributorsSelvakumar, Shri Sanjay Kumar (Author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Mahalingam, Hamsharan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
Social media users are inundated with information. Especially on Instagram--a social media service based on sharing photos--where for many users, missing important posts is a common issue. By creating a recommendation system which learns each user's preference and gives them a curated list of posts, the information overload issue can

Social media users are inundated with information. Especially on Instagram--a social media service based on sharing photos--where for many users, missing important posts is a common issue. By creating a recommendation system which learns each user's preference and gives them a curated list of posts, the information overload issue can be mediated in order to enhance the user experience for Instagram users. This paper explores methods for creating such a recommendation system. The proposed method employs a learning model called ``Factorization Machines" which combines the advantages of linear models and latent factor models. In this work I derived features from Instagram post data, including the image, social data about the post, and information about the user who created the post. I also collect user-post interaction data describing which users ``liked" which posts, and this was used in models leveraging latent factors. The proposed model successfully improves the rate of interesting content seen by the user by anywhere from 2 to 12 times.
ContributorsFakhri, Kian (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them,

With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users.

Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.
ContributorsAbbasi, Mohammad Ali, 1975- (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2014
Description
Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected

Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected by first responders on the ground in the affected region or by official agencies such as local governments involved in the response. However, the ubiquity of mobile devices has empowered people to publish information during a crisis through social media, such as the damage reports from a hurricane. Social media has thus emerged as an important channel of information which can be leveraged to improve crisis response. Twitter is a popular medium which has been employed in recent crises. However, it presents new challenges: the data is noisy and uncurated, and it has high volume and high velocity. In this work, I study four key problems in the use of social media for crisis response: effective monitoring and analysis of high volume crisis tweets, detecting crisis events automatically in streaming data, identifying users who can be followed to effectively monitor crisis, and finally understanding user behavior during crisis to detect tweets inside crisis regions. To address these problems I propose two systems which assist disaster responders or analysts to collaboratively collect tweets related to crisis and analyze it using visual analytics to identify interesting regions, topics, and users involved in disaster response. I present a novel approach to detecting crisis events automatically in noisy, high volume Twitter streams. I also investigate and introduce novel methods to tackle information overload through the identification of information leaders in information diffusion who can be followed for efficient crisis monitoring and identification of messages originating from crisis regions using user behavior analysis.
ContributorsKumar, Shamanth (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Maciejewski, Ross (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2015
Description
This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral

This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral scales based on their web site corpus. Simultaneously, a gold standard ranking of these organizations was created through domain experts and compute expert-to-expert agreements and present experimental results comparing the performance of the QUIC based scaling system to another baseline method for organizations. The QUIC based algorithm not only outperforms the baseline methods, but it is also the only system that consistently performs at area expert-level accuracies for all scales. Also, a multi-scale ideological model has been developed and it investigates the correlates of Islamic extremism in Indonesia, Nigeria and UK. This analysis demonstrate that violence does not correlate strongly with broad Muslim theological or sectarian orientations; it shows that religious diversity intolerance is the only consistent and statistically significant ideological correlate of Islamic extremism in these countries, alongside desire for political change in UK and Indonesia, and social change in Nigeria. Next, dynamic issues and communities tracking system based on NMF(Non-negative Matrix Factorization) co-clustering algorithm has been built to better understand the dynamics of virtual communities. The system used between Iran and Saudi Arabia to build and apply a multi-party agent-based model that can demonstrate the role of wedges and spoilers in a complex environment where coalitions are dynamic. Lastly, a visual intelligence platform for tracking the diffusion of online social movements has been developed called LookingGlass to track the geographical footprint, shifting positions and flows of individuals, topics and perspectives between groups. The algorithm utilize large amounts of text collected from a wide variety of organizations’ media outlets to discover their hotly debated topics, and their discriminative perspectives voiced by opposing camps organized into multiple scales. Discriminating perspectives is utilized to classify and map individual Tweeter’s message content to social movements based on the perspectives expressed in their tweets.
ContributorsKim, Nyunsu (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Hsiao, Sharon (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
Description
Social media platforms have become widely used for open communication, yet their lack of moderation has led to the proliferation of harmful content, including hate speech. Manual monitoring of such vast amounts of user-generated data is impractical, thus necessitating automated hate speech detection methods. Pre-trained language models have been proven

Social media platforms have become widely used for open communication, yet their lack of moderation has led to the proliferation of harmful content, including hate speech. Manual monitoring of such vast amounts of user-generated data is impractical, thus necessitating automated hate speech detection methods. Pre-trained language models have been proven to possess strong base capabilities, which not only excel at in-distribution language modeling but also show powerful abilities in out-of-distribution language modeling, transfer learning and few-shot learning. However, these models operate as complex function approximators, mapping input text to a hate speech classification, without providing any insights into the reasoning behind their predictions. Hence, existing methods often lack transparency, hindering their effectiveness, particularly in sensitive content moderation contexts. Recent efforts have been made to integrate their capabilities with large language models like ChatGPT and Llama2, which exhibit reasoning capabilities and broad knowledge utilization. This thesis explores leveraging the reasoning abilities of large language models to enhance the interpretability of hate speech detection. A novel framework is proposed that utilizes state-of-the-art Large Language Models (LLMs) to extract interpretable rationales from input text, highlighting key phrases or sentences relevant to hate speech classification. By incorporating these rationale features into a hate speech classifier, the framework inherently provides transparent and interpretable results. This approach combines the language understanding prowess of LLMs with the discriminative power of advanced hate speech classifiers, offering a promising solution to the challenge of interpreting automated hate speech detection models.
ContributorsNirmal, Ayushi (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Wei, Hua (Committee member) / Arizona State University (Publisher)
Created2024