Matching Items (18)
Filtering by

Clear all filters

Description

In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of

In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of six language models<br/>demonstrating their effectiveness in seven tweet classification tasks. I explain the successes and<br/>challenges in reproducing these results and provide analysis for the future implications of fake<br/>news research.

ContributorsChang, Ariz Bay (Author) / Liu, Huan (Thesis director) / Tahir, Anique (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

2018, Google researchers published the BERT (Bidirectional Encoder Representations from Transformers) model, which has since served as a starting point for hundreds of NLP (Natural Language Processing) related experiments and other derivative models. BERT was trained on masked-language modelling (sentence prediction) but its capabilities extend to more common NLP tasks,

2018, Google researchers published the BERT (Bidirectional Encoder Representations from Transformers) model, which has since served as a starting point for hundreds of NLP (Natural Language Processing) related experiments and other derivative models. BERT was trained on masked-language modelling (sentence prediction) but its capabilities extend to more common NLP tasks, such as language inference and text classification. Naralytics is a company that seeks to use natural language in order to be able to categorize users who create text into multiple categories – which is a modified version of classification. However, the text that Naralytics seeks to pull from exceed the maximum token length of 512 tokens that BERT supports – so this report discusses the research towards multiple BERT derivatives that seek to address this problem – and then implements a solution that addresses the multiple concerns that are attached to this kind of model.

ContributorsNgo, Nicholas (Author) / Carter, Lynn (Thesis director) / Lee, Gyou-Re (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Economics Program in CLAS (Contributor)
Created2023-05
Description

Social injustice issues are a familiar, yet very arduous topic to define. This is because they are difficult to predict and tough to understand. Injustice issues negatively affect communities because they directly violate human rights and they span a wide range of areas. For instance, injustice issues can relate to

Social injustice issues are a familiar, yet very arduous topic to define. This is because they are difficult to predict and tough to understand. Injustice issues negatively affect communities because they directly violate human rights and they span a wide range of areas. For instance, injustice issues can relate to unfair labor practices, racism, gender bias, politics etc. This leaves numerous individuals wondering how they can make sense of social injustice issues and perhaps take efforts to stop them from occurring in the future. In an attempt to understand the rather complicated nature of social injustice, this thesis takes a data driven approach to define a social injustice index for a specific country, India. The thesis is an attempt to quantify and track social injustice through social media to see the current social climate. This was accomplished by developing a web scraper to collect hate speech data from Twitter. The tweets collected were then classified by their level of hate and presented on a choropleth map of India. Ultimately, a user viewing the ‘India Social Injustice Index’ map should be able to simply view an index score for a desired state in India through a single click. This thesis hopes to make it simple for any user viewing the social injustice map to make better sense of injustice issues.

ContributorsDeosthali, Shefali (Author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Mathews, Nicolle (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is

In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is “information that either does not have a predefined data model or is not organized in a pre-defined manner” (Balducci & Marinova 2018). Such data are difficult to put into spreadsheets and relational databases due to their lack of numeric values and often come in the form of text fields written by the consumers (Wolff, R. 2020). The goal of this project is to help in the development of a machine learning model to aid CommonSpirit Health and ServiceNow, hence why this approach using unstructured data was selected. This paper provides a general overview of the process of unstructured data management and explores some existing implementations and their efficacy. It will then discuss our approach to converting unstructured cases into usable data that were used to develop an artificial intelligence model which is estimated to be worth $400,000 and save CommonSpirit Health $1,200,000 in organizational impact.
ContributorsBergsagel, Matteo (Author) / De Waard, Jan (Co-author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Burns, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
Increasing misinformation in social media channels has become more prevalent since the beginning of the COVID-19 pandemic as countless myths and rumors have circulated over the internet. This misinformation has potentially lethal consequences as many people make important health decisions based on what they read online, thus creating an urgent

Increasing misinformation in social media channels has become more prevalent since the beginning of the COVID-19 pandemic as countless myths and rumors have circulated over the internet. This misinformation has potentially lethal consequences as many people make important health decisions based on what they read online, thus creating an urgent need to combat it. Although many Natural Language Processing (NLP) techniques have been used to identify misinformation in text, prompt-based methods are under-studied for this task. This work explores prompt learning to classify COVID-19 related misinformation. To this extent, I analyze the effectiveness of this proposed approach on four datasets. Experimental results show that prompt-based classification achieves on average ~13% and ~6% improvement compared to a single-task and multi-task model, respectively. Moreover, analysis shows that prompt-based models can achieve competitive results compared to baselines in a few-shot learning scenario.
ContributorsBrown, Clinton (Author) / Baral, Chitta (Thesis director) / Walker, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
The software element of home and small business networking solutions has failed to keep pace with annual development of newer and faster hardware. The software running on these devices is an afterthought, oftentimes equipped with minimal features, an obtuse user interface, or both. At the same time, this past year

The software element of home and small business networking solutions has failed to keep pace with annual development of newer and faster hardware. The software running on these devices is an afterthought, oftentimes equipped with minimal features, an obtuse user interface, or both. At the same time, this past year has seen the rise of smart home assistants that represent the next step in human-computer interaction with their advanced use of natural language processing. This project seeks to quell the issues with the former by exploring a possible fusion of a powerful, feature-rich software-defined networking stack and the incredible natural language processing tools of smart home assistants. To accomplish these ends, a piece of software was developed to leverage the powerful natural language processing capabilities of one such smart home assistant, the Amazon Echo. On one end, this software interacts with Amazon Web Services to retrieve information about a user's speech patterns and key information contained in their speech. On the other end, the software joins that information with its previous session state to intelligently translate speech into a series of commands for the separate components of a networking stack. The software developed for this project empowers a user to quickly make changes to several facets of their networking gear or acquire information about it with just their language \u2014 no terminals, java applets, or web configuration interfaces needed, thus circumventing clunky UI's or jumping from shell to shell. It is the author's hope that showing how networking equipment can be configured in this innovative way will draw more attention to the current failings of networking equipment and inspire a new series of intuitive user interfaces.
ContributorsHermens, Ryan Joseph (Author) / Meuth, Ryan (Thesis director) / Burger, Kevin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
This research lays down foundational work in the semantic reconstruction of linguistic politeness in English-to-Japanese machine translation and thereby advances semantic-based automated translation of English into other natural languages. I developed a Java project called the PoliteParser that is intended as a plug-in to existing semantic parsers to determine whether

This research lays down foundational work in the semantic reconstruction of linguistic politeness in English-to-Japanese machine translation and thereby advances semantic-based automated translation of English into other natural languages. I developed a Java project called the PoliteParser that is intended as a plug-in to existing semantic parsers to determine whether verbs in dialogue in an English corpus should be conjugated into the plain or the polite honorific form when translated into Japanese. The PoliteParser bases this decision off of semantic information about the social relationships between the speaker and the listener, the speaker's personality, and the circumstances of the utterance. Testing undergone during the course of this research demonstrates that the PoliteParser can achieve levels of accuracy 31 percentage points higher than that of statistical translation systems when integrated with a semantic parser and 54 percentage points higher when used with pre-parsed data.
ContributorsGuiou, Jared Tyler (Author) / Baral, Chitta (Thesis director) / Tanno, Koji (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
Description
Language models have integrated themselves into many aspects of digital life, shaping everything from casual conversations to critical support systems. This thesis investigates how large language models (LLMs) respond to LGBTQ+ slang and heteronormative language. While LLMs have the potential to provide inclusive digital support, biases in their training

Language models have integrated themselves into many aspects of digital life, shaping everything from casual conversations to critical support systems. This thesis investigates how large language models (LLMs) respond to LGBTQ+ slang and heteronormative language. While LLMs have the potential to provide inclusive digital support, biases in their training data often result in misinterpretation of queer language, reinforcing stereotypes and marginalizing LGBTQ+ communities. Through a series of experiments, the study evaluates factual accuracy, emotional content, and the impact of queer slang on responses from models including GPT-3.5, GPT-4o, Llama2, Llama3, Gemma, and Mistral. The findings reveal that heteronormative prompts can trigger safety mechanisms, leading to neutral or corrective responses, while LGBTQ+ slang elicits more negative emotions, indicating a need for improved inclusivity in LLMs. These insights highlight the importance of enhancing LLM fairness and emotional responsiveness to reflect diverse linguistic identities.
ContributorsTint, Joshua (Author) / Baral, Chitta (Thesis director) / Senanayake, Ransalu (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-12
Description
The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations in text when different keywords are used for similar concepts.

This thesis develops a unique type of textual features that generalize triplets extracted from text, by clustering them into high-level concepts. These concepts are utilized as features to detect frames in text. Compared to uni-gram and bi-gram based models, classification and clustering using generalized concepts yield better discriminating features and a higher classification accuracy with a 12% boost (i.e. from 74% to 83% F-measure) and 0.91 clustering purity for Frame/Non-Frame detection.

The automatic discovery of complex causal chains among interlinked events and their participating actors has not yet been thoroughly studied. Previous studies related to extracting causal relationships from text were based on laborious and incomplete hand-developed lists of explicit causal verbs, such as “causes" and “results in." Such approaches result in limited recall because standard causal verbs may not generalize well to accommodate surface variations in texts when different keywords and phrases are used to express similar causal effects. Therefore, I present a system that utilizes generalized concepts to extract causal relationships. The proposed algorithms overcome surface variations in written expressions of causal relationships and discover the domino effects between climate events and human security. This semi-supervised approach alleviates the need for labor intensive keyword list development and annotated datasets. Experimental evaluations by domain experts achieve an average precision of 82%. Qualitative assessments of causal chains show that results are consistent with the 2014 IPCC report illuminating causal mechanisms underlying the linkages between climatic stresses and social instability.
ContributorsAlashri, Saud (Author) / Davulcu, Hasan (Thesis advisor) / Desouza, Kevin C. (Committee member) / Maciejewski, Ross (Committee member) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2018