Filtering by
- All Subjects: Natural Language Processing
- Creators: Computer Science and Engineering Program
In this paper, I introduce the fake news problem and detail how it has been exacerbated<br/>through social media. I explore current practices for fake news detection using natural language<br/>processing and current benchmarks in ranking the efficacy of various language models. Using a<br/>Twitter-specific benchmark, I attempt to reproduce the scores of six language models<br/>demonstrating their effectiveness in seven tweet classification tasks. I explain the successes and<br/>challenges in reproducing these results and provide analysis for the future implications of fake<br/>news research.
2018, Google researchers published the BERT (Bidirectional Encoder Representations from Transformers) model, which has since served as a starting point for hundreds of NLP (Natural Language Processing) related experiments and other derivative models. BERT was trained on masked-language modelling (sentence prediction) but its capabilities extend to more common NLP tasks, such as language inference and text classification. Naralytics is a company that seeks to use natural language in order to be able to categorize users who create text into multiple categories – which is a modified version of classification. However, the text that Naralytics seeks to pull from exceed the maximum token length of 512 tokens that BERT supports – so this report discusses the research towards multiple BERT derivatives that seek to address this problem – and then implements a solution that addresses the multiple concerns that are attached to this kind of model.
Social injustice issues are a familiar, yet very arduous topic to define. This is because they are difficult to predict and tough to understand. Injustice issues negatively affect communities because they directly violate human rights and they span a wide range of areas. For instance, injustice issues can relate to unfair labor practices, racism, gender bias, politics etc. This leaves numerous individuals wondering how they can make sense of social injustice issues and perhaps take efforts to stop them from occurring in the future. In an attempt to understand the rather complicated nature of social injustice, this thesis takes a data driven approach to define a social injustice index for a specific country, India. The thesis is an attempt to quantify and track social injustice through social media to see the current social climate. This was accomplished by developing a web scraper to collect hate speech data from Twitter. The tweets collected were then classified by their level of hate and presented on a choropleth map of India. Ultimately, a user viewing the ‘India Social Injustice Index’ map should be able to simply view an index score for a desired state in India through a single click. This thesis hopes to make it simple for any user viewing the social injustice map to make better sense of injustice issues.

This thesis develops a unique type of textual features that generalize triplets extracted from text, by clustering them into high-level concepts. These concepts are utilized as features to detect frames in text. Compared to uni-gram and bi-gram based models, classification and clustering using generalized concepts yield better discriminating features and a higher classification accuracy with a 12% boost (i.e. from 74% to 83% F-measure) and 0.91 clustering purity for Frame/Non-Frame detection.
The automatic discovery of complex causal chains among interlinked events and their participating actors has not yet been thoroughly studied. Previous studies related to extracting causal relationships from text were based on laborious and incomplete hand-developed lists of explicit causal verbs, such as “causes" and “results in." Such approaches result in limited recall because standard causal verbs may not generalize well to accommodate surface variations in texts when different keywords and phrases are used to express similar causal effects. Therefore, I present a system that utilizes generalized concepts to extract causal relationships. The proposed algorithms overcome surface variations in written expressions of causal relationships and discover the domino effects between climate events and human security. This semi-supervised approach alleviates the need for labor intensive keyword list development and annotated datasets. Experimental evaluations by domain experts achieve an average precision of 82%. Qualitative assessments of causal chains show that results are consistent with the 2014 IPCC report illuminating causal mechanisms underlying the linkages between climatic stresses and social instability.