Matching Items (15)
Filtering by

Clear all filters

Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, the Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction, and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsDong, Edmund Engsun (Co-author) / Ouellette, Abigail (Co-author) / Cole, Tyler (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
For my thesis, I developed an educational video game titled Cannon Quest. Based around a thought experiment proposed in 1687 by Sir Isaac Newton, Cannon Quest allows players to explore a miniature, 2-dimensional solar system using real physics and gravity. My principle goal was to create an interactive model of

For my thesis, I developed an educational video game titled Cannon Quest. Based around a thought experiment proposed in 1687 by Sir Isaac Newton, Cannon Quest allows players to explore a miniature, 2-dimensional solar system using real physics and gravity. My principle goal was to create an interactive model of orbital motion, with some game/simulation elements. This allows players who are totally unfamiliar with orbital mechanics to gain at least a rudimentary understanding simply by playing the game. While the educational model was my primary goal, care was taken to ensure that Cannon Quest functions as a playable simulator. I developed my own user interface (UI), control setup, and art, as well as integrating music and animation for a more complete user experience. I also spent a significant amount of time balancing the gameplay aspects with the real physics, occasionally sacrificing reality where needed to ensure a better experience. The resulting product is simple and straightforward, while retaining much of the nuances of actual orbital motion. I also developed a website to host Cannon Quest, and better direct my playtesters from a single hub. You can visit this website at www.cannonquest.carrd.co. Alternatively, you can visit https://possiblymatthew.itch.io/cannon-quest or https://github.com/matthewbenjamin22/Cannon-Quest to play the game.
ContributorsBenjamin, Matthew (Author) / Kobayashi, Yoshihiro (Thesis director) / Feng, Xuerong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
Description

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will be described is self-play in video games, where a neural model will be researched and described that will teach a computer to complete a level of Super Mario World (1990) on its own. The neural model in question was inspired by the academic paper “Evolving Neural Networks through Augmenting Topologies”, which was written by Kenneth O. Stanley and Risto Miikkulainen of University of Texas at Austin. The model that will actually be described is from YouTuber SethBling of the California Institute of Technology. The second department that will be described is cybersecurity, where an algorithm is described from the academic paper “Process Based Volatile Memory Forensics for Ransomware Detection”, written by Asad Arfeen, Muhammad Asim Khan, Obad Zafar, and Usama Ahsan. This algorithm utilizes Python and the Volatility framework to detect malicious software in an infected system.

ContributorsBallecer, Joshua (Author) / Yang, Yezhou (Thesis director) / Luo, Yiran (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
When playing Dragon Quest IX, players are faced with immense amounts of game information. In order to save hundreds of hours of learning and memorizing intricate game details, many players prefer to simply refer to a guide as they play. This thesis project aims to develop a guide app to

When playing Dragon Quest IX, players are faced with immense amounts of game information. In order to save hundreds of hours of learning and memorizing intricate game details, many players prefer to simply refer to a guide as they play. This thesis project aims to develop a guide app to fulfill this role. The app will provide players with an interactive and user-friendly platform to access detailed information on equipment, weapons, items, recipes, and monsters within the game. The project will involve extensive research and analysis of the game's data, as well as the development of a database to store and organize relevant information. Ultimately, the guide app will provide an invaluable resource for players looking to enhance their Dragon Quest IX experience and achieve a deeper understanding of the game's intricacies.
ContributorsMarino, Reese (Author) / Balasooriya, Janaka (Thesis director) / Atkinson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
ContributorsNguyen, Jordan Ngoc (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
Description
The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.
ContributorsHsia, Allen (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
Description
While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction

While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction has become trickier as a passionate and growing fan base begins to act as a culture not unlike traditional sporting. These concerns call for a better understanding of what constitutes a harmful addiction to video games as its heavy practice becomes more financially viable and accepted into mainstream culture.
ContributorsGohil, Abhishek Bhagirathsinh (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
Description
When playing Dragon Quest IX, players are faced with immense amounts of game information. In order to save hundreds of hours of learning and memorizing intricate game details, many players prefer to simply refer to a guide as they play. This thesis project aims to develop a guide app to

When playing Dragon Quest IX, players are faced with immense amounts of game information. In order to save hundreds of hours of learning and memorizing intricate game details, many players prefer to simply refer to a guide as they play. This thesis project aims to develop a guide app to fulfill this role. The app will provide players with an interactive and user-friendly platform to access detailed information on equipment, weapons, items, recipes, and monsters within the game. The project will involve extensive research and analysis of the game's data, as well as the development of a database to store and organize relevant information. Ultimately, the guide app will provide an invaluable resource for players looking to enhance their Dragon Quest IX experience and achieve a deeper understanding of the game's intricacies.
ContributorsMarino, Reese (Author) / Balasooriya, Janaka (Thesis director) / Atkinson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
New project managers with relatively little experience are nonetheless tasked with leading projects to delivery in the engineering industry. These managers, if not provided adequate learning materials and time from the company, must research and learn on the job in a high-stakes environment. This project proposes a solution by exploring

New project managers with relatively little experience are nonetheless tasked with leading projects to delivery in the engineering industry. These managers, if not provided adequate learning materials and time from the company, must research and learn on the job in a high-stakes environment. This project proposes a solution by exploring the efficacy of educational video games as a supplement to traditional methods of learning. A sample game called Project Coven is created as a small scale model of self-taught project management training. The game integrates mechanics that reflect the functionalities of gantt charts, allowing players to visualize project timelines, allocate resources, and set deadlines in a low-risk setting to improve the players planning, cost, and risk management skills. Playtesters of Project Coven are provided a survey that gauges the player’s general interest in the game as well as their understanding of gantt chart components, project states, task prioritization, and chart creation. The results indicate the game is both engaging and educational, with players successfully identifying key gantt chart elements, interpreting project timelines, and applying basic prioritization strategies. However, the survey indicated other areas for improvement, specifically with risk-cost analysis and allocating buffer time. The response to Project Coven serves to illustrate that video games can offer an effective alternative to traditional project management training with skill development through a unique interactive learning medium.
ContributorsRich, Ethan (Author) / Selgrad, Justin (Thesis director) / Trant, Eric (Committee member) / Tung, Qadri (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-12