Matching Items (71)
Filtering by

Clear all filters

172857-Thumbnail Image.png
Description

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This

George Wells Beadle studied corn, fruit flies, and funguses in the US during the twentieth century. These studies helped Beadle earn the 1958 Nobel Prize in Physiology or Medicine. Beadle shared the prize with Edward Tatum for their discovery that genes help regulate chemical processes in and between cells. This finding, initially termed the one gene-one enzyme hypothesis, helped scientists develop new techniques to study genes and DNA as molecules, not just as units of heredity between generations of organisms. By inducing mutations in organisms while they were in different embryonic stages, Beadle's work on Drosophila and Neurospora led to the analysis of the cell cycle and embryonic development processes.

Created2014-03-14
172873-Thumbnail Image.png
Description

Theophilus Shickel Painter studied the structure and
function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at
the University of Texas at Austin in Austin, Texas. In the 1920s
and 1930s, Painter studied the chromosomes of the salivary gland
giant

Theophilus Shickel Painter studied the structure and
function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at
the University of Texas at Austin in Austin, Texas. In the 1920s
and 1930s, Painter studied the chromosomes of the salivary gland
giant chromosomes of the fruit fly (Drosophila
melanogaster), with Hermann J. Muller. Muller and Painter
studied the ability of X-rays to cause changes in the chromosomes
of fruit flies. Painter also studied chromosomes in mammals.
He investigated the development of the male gamete, a process
called spermatogenesis, in several invertebrates and vertebrates,
including mammals. In addition, Painter studied the role the
Y-chromosome plays in the determination and development of the male
embryo. Painter's research concluded that egg cells fertilized by
sperm cell bearing an X-chromosome resulted in a female embryo,
whereas egg cells fertilized by a sperm cell carrying a
Y-chromosome resulted in a male embryo. Painter's work with
chromosomes helped other researchers determine that X- and
Y-chromosomes are responsible for sex determination.

Created2014-11-22
172893-Thumbnail Image.png
Description

The Stazione Zoologica Anton Dohrn (Anton Dohrn Zoological Station) is a public research institute focusing on biology and biodiversity. Hereafter called the Station, it was founded in Naples, Italy, in 1872 by Anton Dohrn. The type of research conducted at the Station has varied since it was created, though

The Stazione Zoologica Anton Dohrn (Anton Dohrn Zoological Station) is a public research institute focusing on biology and biodiversity. Hereafter called the Station, it was founded in Naples, Italy, in 1872 by Anton Dohrn. The type of research conducted at the Station has varied since it was created, though initial research focused on embryology. At the turn of the twentieth century, researchers at the Station established the sea urchin (Echinoidea) as a model organism for embryological research. A number of scientists conducted experiments on embryos and embryonic development at the Station from the 1890s to the 1930s, including Hans Driesch, Jacques Loeb, Theodor Boveri, Otto Warburg, Hans Spemann and Thomas Morgan. Research completed during this time at the Station contributed to the study of experimental embryology and developmental biology and helped shape the history of embryology.

Created2014-12-22
172895-Thumbnail Image.png
Description

Walter Jakob Gehring discovered the homeobox, a DNA segment found in a specific cluster of genes that determine the body plan of animals, plants, and fungi. Gehring identified the homeobox in 1983, with the help of colleagues while isolating the Antennapedia (Antp) gene in fruit flies (Drosophila) at the University

Walter Jakob Gehring discovered the homeobox, a DNA segment found in a specific cluster of genes that determine the body plan of animals, plants, and fungi. Gehring identified the homeobox in 1983, with the help of colleagues while isolating the Antennapedia (Antp) gene in fruit flies (Drosophila) at the University of Basel in Basel, Switzerland. Hox genes, a family of genes that have the homeobox, determine the head-to-tail (anterior-posterior) body axis of both vertebrates and invertebrates. Gehring also identified the homeobox-containing Pax-6 gene as the master control gene in eye development of Drosophila, the same gene that, when mutated or absent in humans, leads to aniridia, or lack of the iris, in humans. Gehring's work with the homeobox suggested to biologists that widely different species share a similar and evolutionarily conserved genetic pathway that controls the development of overall body plans, from fruit flies to humans.

Created2014-12-22
172914-Thumbnail Image.png
Description

During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know

During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know if phages contained genes, or whether genes were made of DNA or protein. In 1952, Hershey and his research assistant, Martha Chase, conducted phage experiments that convinced scientists that genes were made of DNA. For his work with phages, Hershey shared the 1969 Nobel Prize in Physiology or Medicine with Max Delbrück and Salvador Luria. Hershey conducted experiments with results that connected DNA to the function of genes, thereby changing the way scientists studied molecular biology and the development of organisms.

Created2019-04-29
172924-Thumbnail Image.png
Description

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria. In 1959, the researchers published their results in a paper titled 'The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the Synthesis of b-galactosidase by E. coli'. When they compared mutated strains of E. coli to a normal strain, Pardee, Jacob, and Monod identified the abnormal regulation processes and enzymes produced by the mutated genes. The results showed how enzymes break down the molecules that the bacteria ingested. The PaJaMas experiments uncovered some of the molecular mechanisms that regulate how some genes yield enzymes in many species.

Created2015-05-28
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
172765-Thumbnail Image.png
Description

Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval

Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine. Into the early decades of the twenty-first century, Wieschaus continued his thirty year tenure as a professor at Princeton University in Princeton, New Jersey.

Created2014-04-29
172786-Thumbnail Image.png
Description

Walter Stanborough Sutton studied grasshoppers and connected the phenomena of meiosis, segregation, and independent assortment with the chromosomal theory of inheritance in the early twentieth century in the US. Sutton researched chromosomes, then called inheritance mechanisms. He confirmed a theory of Wilhelm Roux, who studied embryos in Breslau, Germany, in

Walter Stanborough Sutton studied grasshoppers and connected the phenomena of meiosis, segregation, and independent assortment with the chromosomal theory of inheritance in the early twentieth century in the US. Sutton researched chromosomes, then called inheritance mechanisms. He confirmed a theory of Wilhelm Roux, who studied embryos in Breslau, Germany, in the late 1880s, who had argued that chromosomes and heredity were linked. Theodor Boveri, working in Munich, Germany, independently reached similar conclusions about heredity as Sutton. Later scientists named the theory The Sutton-Boveri Theory, or The chromosomal theory of inheritance.

Created2014-06-27
173078-Thumbnail Image.png
Description

The International Eugenics Congresses consisted of three scientific meetings held in London, England, in 1912 and at the American Museum of Natural History in New York City, New York, in 1921 and 1932. Leonard Darwin, son of Charles Darwin, Henry Fairfield Osborn, the President of the American Museum of Natural

The International Eugenics Congresses consisted of three scientific meetings held in London, England, in 1912 and at the American Museum of Natural History in New York City, New York, in 1921 and 1932. Leonard Darwin, son of Charles Darwin, Henry Fairfield Osborn, the President of the American Museum of Natural History, and Charles Benedict Davenport, founder of the Eugenics Record Office at Cold Spring Harbor Laboratory in New York City presided over the Congresses. Scientists presented research in genetics and shared ideas for putting eugenics into practice, such as preventing people they considered inferior from reproducing through forced sterilization. The three International Eugenics Congresses increased scientific and public support of the eugenics movement in the early twentieth century, and established organizations to pursue eugenics agendas that contributed to the forced sterilization of hundreds of thousands of people in the US and Nazi Germany.

Created2021-07-29