Filtering by
- Member of: Theses and Dissertations
The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.
Veterans are approximately 30% more likely than non-veterans to suffer from severe hearing impairment. Tinnitus, or ringing in the ears, which is increasingly common among military service men and women, has been linked to significant cognitive and psychological impairment and can be worsened by the same sounds that trigger post-traumatic stress disorder (PTSD). In fact, tinnitus and PTSD often present as comorbidities, and recent studies suggest these two disorders may share a common neurological pathway. Additional studies are required to better understand the connection between hearing loss and impaired cognitive function such as that observed in with PTSD. Here, we use the fruit fly, Drosophila melanogaster, to explore the relationship between hearing loss and cognitive function. Negative geotaxis climbing assays and courtship behavior analysis were used to examine neurobehavioral changes induced by prolonged, intense auditory stimulation. Preliminary results suggest that exposure to loud noise for an extended period of time significantly affected Drosophila behavior, with males being more sensitive than females. Based on our results, there appears to be a potential connection between noise exposure and behavior, further suggesting that Drosophila could be an effective model to study the link between hearing loss and PTSD.
This thesis summarizes the process of writing a children's book about achondroplasia directed at children without genetic disorders. The thesis also includes the children's book The Genetics of Little People that was created during the project.
Evaluating the Heterogeneity of Logistic Regression Models to Predict Coronary Artery Disease Status
This thesis explores the ethical implications of using facial recognition artificial intelligence (AI) technologies in medicine, with a focus on both the opportunities and challenges presented by the use of this technology in the diagnosis and treatment of rare genetic disorders. We highlight the positive outcomes of using AI in medicine, such as accuracy and efficiency in diagnosing rare genetic disorders, while also examining the ethical concerns including bias, misdiagnosis, the issues it may cause within patient-clinician relationships, misuses outside of medicine, and privacy. This paper draws on the opinions of medical providers and other professionals outside of medicine, which finds that while many are excited about the potential of AI to improve medicine, concerns remain about the ethical implications of these technologies. We discuss current legislation controlling the use of AI in healthcare and its ambiguity. Overall, this thesis highlights the need for further research and public discourse to address the ethical implications of using facial recognition and AI technologies in medicine, while also providing recommendations for its future use in medicine.
This thesis explores the ethical implications of using facial recognition artificial intelligence (AI) technologies in medicine, with a focus on both the opportunities and challenges presented by the use of this technology in the diagnosis and treatment of rare genetic disorders. We highlight the positive outcomes of using AI in medicine, such as accuracy and efficiency in diagnosing rare genetic disorders, while also examining the ethical concerns including bias, misdiagnosis, the issues it may cause within patient-clinician relationships, misuses outside of medicine, and privacy. This paper draws on the opinions of medical providers and other professionals outside of medicine, which finds that while many are excited about the potential of AI to improve medicine, concerns remain about the ethical implications of these technologies. We discuss current legislation controlling the use of AI in healthcare and its ambiguity. Overall, this thesis highlights the need for further research and public discourse to address the ethical implications of using facial recognition and AI technologies in medicine, while also providing recommendations for its future use in medicine.
A mutation rate refers to the frequency at which DNA mutations occur in an organism over time. In organisms, mutations are the ultimate source of genetic variation on which selection may act. However, a large number of mutations over time can be detrimental to the cell. Mutation rates are the frequency at which these new mutations arise over time. This can give great insight into DNA repair mechanisms abilities as well as the mutagenic abilities of selected factors. CRISPR-Cas9 is a powerful tool for genome editing, but its off-target effects are not yet fully understood and studied. With its increasing implementation in science and medicine, it is crucial to understand the mutagenic potential of the tool. S. cerevisiae is a model organism for studying genetics due to its fast growth rate and eukaryotic nature. By integrating CRISPR-Cas9 systems into S. cerevisiae, the mutational burden of the technology can be measured and quantified using fluctuation assays. In this experiment, a fluctuation assay using canavanine selective plates was conducted to determine the mutational burden of CRISPR-Cas9 in S. cerevisiae. Multiple trials revealed that various strains of CRISPR-Cas9 had a mutation rate up to 3-fold higher than that of wild-type S. cerevisiae. This information is essential in improving the precision and safety of CRISPR-Cas9 editing in various applications, including gene therapy and biotechnology.