Matching Items (30)
Filtering by

Clear all filters

Description
Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over

Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over the last few years with the impact that covid had on the global supply chain. Prices of materials and labor have never been higher, and with this, the price of energy continues to increase. Therefore, it is important to explore methods to make homes more energy-efficient without the price tag. In addition to benefitting the homeowner by decreasing the cost of their monthly utility bills, making homes more energy efficient will aid in the overall goal of reducing carbon emissions.
ContributorsFiller, Peyton (Author) / Phelan, Patrick (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsCardinale, Matthew (Author) / Johnson, Kayla (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsGarcia, Andres (Author) / Parekh, Mohan (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsParekh, Mohan (Author) / Garcia, Andres (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
This honors thesis project entailed the design, construction, and validation of a mechanism capable of creating a consistent and controllable impact between a stone-tipped dropper and a stone core or other arbitrary workpiece, to assist the experimental archeologist in conducting flintknapping research which retains the essential features of hand knapping while largely removing the

This honors thesis project entailed the design, construction, and validation of a mechanism capable of creating a consistent and controllable impact between a stone-tipped dropper and a stone core or other arbitrary workpiece, to assist the experimental archeologist in conducting flintknapping research which retains the essential features of hand knapping while largely removing the large element of variation between human knappers. After the initial design of a linear gravity-powered mechanism—or dropper device—a simplified prototype was assembled as a proof of concept. After a modified version of the full-sized design was assembled using insights from the prototype, impact force testing was conducted to verify the device’s theoretical principles of operation. The validation experiment verified that the device may be accurately controlled by varying the drop height with the square of the desired impact force relative to an arbitrary reference drop, though it was unable to predict the absolute magnitude of impact forces experienced by real hammerstones and cores during knapping. The project was successful in creating a tool that may be useful for researchers to conduct better-controlled archeology experiments, though the design may be improved with added functionality that would allow users to more effectively control the orientation of the striker and core.
ContributorsMukherjee, Ribhu (Author) / Grewal, Anoop (Thesis director) / Murray, John (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2024-05
Description
The Compact X-Ray Light Source (CXLS) and Compact X-Ray Free-Electron Laser (CXFEL) are two novel compact X-Ray sources that enable the study of fundamental processes in science and nature. The CXLS uses inverse Compton scattering of relativistic electrons with a high- energy infrared laser to generate X-Ray photons in a

The Compact X-Ray Light Source (CXLS) and Compact X-Ray Free-Electron Laser (CXFEL) are two novel compact X-Ray sources that enable the study of fundamental processes in science and nature. The CXLS uses inverse Compton scattering of relativistic electrons with a high- energy infrared laser to generate X-Ray photons in a way that greatly reduces the size and cost of these machines. The X-Ray beam produced by the CXLS is delivered to an Experiment Chamber housing motorized stages, infinity-corrected optical systems, and a Montel Optic which focuses the X-Ray beam to an interaction point. This X-Ray beam can be used to take snapshots of samples at the atomic level, providing unique insight in the study of quantum materials, medicine development, and renewable energy generation. In order for experiments with the CXLS to take place, samples must be remotely delivered to this interaction point in a way that provides users with a precise view of the interaction. In order for the samples to be mounted in the Experiment Chamber, cassettes were designed and fabricated in an iterative process to accommodate a particular sample chip or set of microfluidic fittings and components. These cassettes were manufactured using a resin-based 3D printer, and the final designs were able to securely house samples and be mounted in a sample holder frame. To bring the sample to the interaction point, a stack of PI Stages and a Hexapod were brought under EPICS control. Input/Output Controllers for each device were installed on a Linux computer, exposing process variables that facilitated the development of controls interfaces. Using MATLAB, user interfaces were created via an Agile software development approach that emphasized iterative refinements and user feedback. A calibration procedure was developed to maximize the accuracy of scans performed by the stages. During testing, the software was able to successfully implement coordinate transformations to bring many different targets on a single chip to an interaction point as part of a single scan.
ContributorsDupre, Alan (Author) / Holl, Mark (Thesis director) / Teitelbaum, Samuel (Committee member) / Ros, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05
Description
The Nash, a jazz venue in Phoenix, Arizona, is an example of a decades-long process of the formalization of jazz—being codified as an art music relying on academic and philanthropic support. Formalization developed as jazz began to be taken seriously as art music worth of critical evaluation from critics, academics,

The Nash, a jazz venue in Phoenix, Arizona, is an example of a decades-long process of the formalization of jazz—being codified as an art music relying on academic and philanthropic support. Formalization developed as jazz began to be taken seriously as art music worth of critical evaluation from critics, academics, and the hallowed establishments of American high art. Jazz became increasingly dependent on an infrastructure of institutional support, and a neoclassical ideology sought to define what styles of jazz were ‘real’ and worthy of preservation. In Phoenix, the origins of The Nash were laid in 1977 when Jazz in Arizona was formed, a non-profit organization that aimed to support jazz through information dissemination, music scholarships, festival organizing, and attending jazz events throughout Arizona. The Nash was conceived as a way to more fully engage young people in the community. Herb Ely, a prominent Phoenix attorney and philanthropist, pitched the idea to Joel Goldenthal, then Executive Director of Jazz in Arizona. The venue was built under the auspices of Jazz in Arizona, and operates as the organization’s headquarters. In keeping with the broader trend of formalization, The Nash presents jazz as a performance of artistic expression. Continued philanthropic support allows The Nash a degree of independence from economic concerns. The Nash is also committed to providing support for jazz education, by partnering with local educational institutions and presenting educational programming. The focus on providing opportunities for young musicians, as well as its location in the hip neighborhood of Roosevelt Row have contributed to The Nash becoming relatively popular among young people. However, the formalized approach to jazz espoused by The Nash has created some conflicts within the Phoenix jazz community, as some professional musicians feel that The Nash is underpaying musicians for their labor. The American Federation of Musicians Local 586 argues that musicians are workers, and The Nash ought to be paying union scale.
Created2016-12
Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft substrate systems, and the importance of controlling them. In today's

The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft substrate systems, and the importance of controlling them. In today's engineering research, wrinkling in systems in beginning to be viewed as a means for engineering innovation rather than failure. This research is important to further progress the possible applications the technology proposes, such as flexible electronics and tunable adhesives. This work utilizes a cost efficient and relatively easy method for generating and analyzing buckled systems. Ultra violate oxidation at ambient temperatures is exploited to create a stiff thin surface on rubber like polydimethylsiloxane, and couple with strain induction wrinkles are generated. Wrinkle characteristics such as amplitude, wavelengths and wetting properties were investigated. In simple cases, trends were confirmed that increased oxidation relates to increased buckle wavelengths, and increase in strain corresponds to a decrease in wavelength. Hierarchical buckles were produced in one-dimensional systems treated with a multi-step method; these were the first to be generated in the ASU labs. Unique topographic changes were produced in two-dimensional systems treated with the same method. Honeycomb or dome like structures were noted to occur, important as they undergo a different energy-reliving configuration compared to traditional parallel buckles. The information provided characterizes many aspects of the buckle phenomena and will allow for further inquiry into specific functions utilizing the technology to continue advancements in engineering.
ContributorsValacich, Michael James (Author) / Jiang, Hanqing (Thesis director) / Yu, Hongyu (Committee member) / Teng, Ma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05