Filtering by
- All Subjects: Computer Science
In the United States, the word "earthquake" is extensively used. This natural disaster has a year-round impact on numerous states across the country. Earthquakes are simply more than a natural calamity; they also have a negative psychological impact. Earthquake safety measures are essential for ensuring citizens' safety. This paper proposes, a technique for evaluating earthquake safety activities and instructing individuals in selecting appropriate precautions. Earthquake protection using Reach.love plus Amazon Alexa is special in that it uses cutting-edge virtual reality technology. The platform developed by Reach.love takes earthquake prevention to a new and innovative direction. The feeling of presence in a VR headset linked within Reach.love, allows the user to feel that an earthquake is occurring right now. Additionally, each location includes audio instructions that explain what to do in specific scenarios. The user can practice and mentally train to respond appropriately when a real earthquake happens, comparable to a 3D drill. Finally, the user will be able to utilize Amazon Alexa for help within the rooms in Reach.love to improve the experience of earthquake safety training. For example, if the user speaks to Alexa during the simulation and says, "Alexa, turn off the audio instructions," Alexa will do so, and the user will no longer hear them. Alexa would be the user's personal assistant during the training of earthquake protection.
The Oasis app is a self-appraisal tool for potential or current problem gamblers to take control of their habits by providing periodic check-in notifications during a gambling session and allowing users to see their progress over time. Oasis is backed by substantial background research surrounding addiction intervention methods, especially in the field of self-appraisal messaging, and applies this messaging in a familiar mobile notification form that can effectively change user’s behavior. User feedback was collected and used to improve the app, and the results show a promising tool that could help those who need it in the future.
The last few years have marked immense growth in the development of digital twins as developers continue to devise strategies to ensure their devices replicate their physical twin’s actions in a real-time virtual environment. The complexity and predictability of these environments can be the deciding factor for adequately testing a digital twin. As of the last year, a digital twin was in development for a capstone project at Arizona State University: CIA Research Labs - Mechanical Systems in Virtual Environments. The virtual device was initially designed for a fixed environment with known ahead-of-time obstacles. Due to the fact that the device was expected only to be traversing set environments, it was unknown how it would handle being driven in an environment with more randomized and unexpected obstacles. For this paper, the device was test driven in the original and environments with various levels of randomization to see how usable and durable the digital twin is despite only being built for environments with expected object locations. The research allowed the creators of this digital twin, utilizing the results of the trial runs and the number of obstacles unsuccessfully avoided, to understand how reliable the controls of the digital twin are when only trained for fixed terrains