Matching Items (21)
Filtering by

Clear all filters

Description

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study by allowing the user to create quizzes. The journal contains my experience working on the project (both successes and failures).

ContributorsRoper, Branden Gerald (Author) / Miller, Phillip (Thesis director) / Zazkis, Dov (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsKuhler, Madison Frances (Co-author) / Capuano, Bailey (Co-author) / Preston, Michael (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved."

ContributorsCapuano, Bailey Kellen (Co-author) / Preston, Michael (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsPreston, Michael Ernest (Co-author) / Capuano, Bailey (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project is to create an inviting chat service for students with minimal barriers of entry. This website, https://gibbl.io, offers a chat room for every class at ASU, making it simple for students to maintain communication.

Created2021-05
Description
In 2022, the revenue generated from accounting services hit an all-time high of 119.48 billion USD (“Accounting Services in the US - Market Size”, 2022). On top of this, research has shown that 45% of all accounting professionals would like to automate something about their workflow (Thomas, 2020). Indeed, a

In 2022, the revenue generated from accounting services hit an all-time high of 119.48 billion USD (“Accounting Services in the US - Market Size”, 2022). On top of this, research has shown that 45% of all accounting professionals would like to automate something about their workflow (Thomas, 2020). Indeed, a lot of bookkeeping accountancy has been phased out by simple automation. However, larger accounting tasks like business mergers still require a team of accountants despite being a largely iterative process. This project chronicles one such attempt at automating accounting events or transactions that are performed by businesses both large and small. With the help of accounting students Madeline Stolper and Heddie Liu we were able to build a fully-functioning website to automate accounting transactions. For this project, we used industry-standard software frameworks React and Express to build the site with dynamic accounting applications. These applications were built with reusable components, making the development of future applications very simple. We also leveraged cutting-edge technological solutions from Amazon Web Services to make the website available on the Internet with rapid response times. Lastly, we incorporated an agile approach to project management and communication, in order to create functionality in the most efficient and organized manner possible. On a large scale, something like this has never been attempted and TurboIFRS/GAAP represents a revolutionary leap in accounting automation.
ContributorsForde, Jakob (Author) / Roth, Ryder (Co-author) / McLemore, Benjamin (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
Wave of Wellness is a mobile application meticulously designed to bridge the gap between technology and healthcare, focusing on enhancing the quality of life for the elderly and their caregivers. The app is embedded with the capability to monitor and track vital signs and biometric data, utilizing integrated sensors to

Wave of Wellness is a mobile application meticulously designed to bridge the gap between technology and healthcare, focusing on enhancing the quality of life for the elderly and their caregivers. The app is embedded with the capability to monitor and track vital signs and biometric data, utilizing integrated sensors to provide real-time health insights. The primary objective of this project is to explore and answer the pivotal question: How can technology be utilized to uplift the living standards of the elderly and caregivers? This is achieved by promoting independence among the elderly, averting unnecessary hospitalizations, and offering valuable health data that can be crucial in medical interventions and lifestyle adjustments.
ContributorsMousa, Ibrahim (Author) / Osburn, Steven (Thesis director) / Turczan, Nathan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-12
Description

This paper explores the inner workings of algorithms that computers may use to play Chess. First, we discuss the classical Alpha-Beta algorithm and several improvements, including Quiescence Search, Transposition Tables, and more. Next, we examine the state-of-the-art Monte Carlo Tree Search algorithm and relevant optimizations. After that, we consider a

This paper explores the inner workings of algorithms that computers may use to play Chess. First, we discuss the classical Alpha-Beta algorithm and several improvements, including Quiescence Search, Transposition Tables, and more. Next, we examine the state-of-the-art Monte Carlo Tree Search algorithm and relevant optimizations. After that, we consider a recent algorithm that transforms Alpha-Beta into a “Rollout” search, blending it with Monte Carlo Tree Search under the rollout paradigm. We then discuss our C++ Chess Engine, Homura, and explain its implementation of a hybrid algorithm combining Alpha-Beta with MCTS. Finally, we show that Homura can play master-level Chess at a strength currently exceeding that of our backtracking Alpha-Beta.

ContributorsMoore, Evan (Author) / Kobayashi, Yoshihiro (Thesis director) / Kambhampati, Subbarao (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
In 2022, a previous team of computer science and accounting students worked together to design and build a fully-functioning website to automate accounting transactions. They created dynamic accounting applications using software frameworks such as React and Express. They then used the services provided by Amazon Web Services to make the

In 2022, a previous team of computer science and accounting students worked together to design and build a fully-functioning website to automate accounting transactions. They created dynamic accounting applications using software frameworks such as React and Express. They then used the services provided by Amazon Web Services to make the website available online. The stakeholders of the project wanted to expand upon the services provided by the website so they entrusted our team with implementing new features and applications to the software system. Using the same software frameworks and services of the previous team, we redesigned the website and increased its functionality to better meet the needs of accounting automation.
ContributorsLim, Jonathan (Author) / Jain, Sejal (Co-author) / Macabou, Elise (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
Music festivals are a vibrant celebration of art, culture, and community, attracting global audiences and creating memorable experiences. However, the environmental footprint associated with these events from waste production, energy consumption, transportation, and water usage, poses significant sustainability challenges. This thesis proposes the development of a sustainable festival event management

Music festivals are a vibrant celebration of art, culture, and community, attracting global audiences and creating memorable experiences. However, the environmental footprint associated with these events from waste production, energy consumption, transportation, and water usage, poses significant sustainability challenges. This thesis proposes the development of a sustainable festival event management software designed to enhance and support sustainability practices at music festivals. The software enables real-time monitoring and analysis of key environmental strategies in waste management, energy use, transportation modes, and water management, assisting organizers in making informed decisions towards reducing ecological impacts. The research encompasses a detailed review of existing sustainable practices in the festival industry, identification of critical monitoring areas, and the integration of relevant algorithms for data analysis within the software. By facilitating better management through technology, this software aims to set a new standard for eco-friendly festival operations, promoting a balance between operational needs and environmental mindfulness.
ContributorsGulaya, Ashwin (Author) / Kuhn, Anthony (Thesis director) / Hedges, Craig (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05