Matching Items (56)
Filtering by

Clear all filters

Description
The Global Change Assessment Model (GCAM) is an integrated assessment tool for exploring consequences and responses to global change. However, the current iteration of GCAM relies on NetCDF file outputs which need to be exported for visualization and analysis purposes. Such a requirement limits the uptake of this modeling platform

The Global Change Assessment Model (GCAM) is an integrated assessment tool for exploring consequences and responses to global change. However, the current iteration of GCAM relies on NetCDF file outputs which need to be exported for visualization and analysis purposes. Such a requirement limits the uptake of this modeling platform for analysts that may wish to explore future scenarios. This work has focused on a web-based geovisual analytics interface for GCAM. Challenges of this work include enabling both domain expert and model experts to be able to functionally explore the model. Furthermore, scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment. The inter-comparison of scenario analysis remains a big challenge in both the climate science and visualization communities. In a close collaboration with the Global Change Assessment Model team, I developed the first visual analytics interface for GCAM with a series of interactive functions to help users understand the simulated impact of climate change on sectors of the global economy, and at the same time allow them to explore inter comparison of scenario analysis with GCAM models. This tool implements a hierarchical clustering approach to allow inter-comparison and similarity analysis among multiple scenarios over space, time, and multiple attributes through a set of coordinated multiple views. After working with this tool, the scientists from the GCAM team agree that the geovisual analytics tool can facilitate scenario exploration and enable scientific insight gaining process into scenario comparison. To demonstrate my work, I present two case studies, one of them explores the potential impact that the China south-north water transportation project in the Yangtze River basin will have on projected water demands. The other case study using GCAM models demonstrates how the impact of spatial variations and scales on similarity analysis of climate scenarios varies at world, continental, and country scales.
ContributorsChang, Zheng (Author) / Maciejewski, Ross (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / White, Dave (Committee member) / Luo, Wei (Committee member) / Arizona State University (Publisher)
Created2015
Description
Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS), satellite or aerial images are vectorized to create maps. In

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS), satellite or aerial images are vectorized to create maps. In graphic design and photography, raster graphics can be vectorized for easier usage and resizing. Vector arts are popular as online contents. Vectorization takes raster images, point clouds, or a series of scattered data samples in space, outputs graphic elements of various types including points, lines, curves, polygons, parametric curves and surface patches. The vectorized representations consist of a different set of components and elements from that of the inputs. The change of representation is the key difference between vectorization and practices such as smoothing and filtering. Compared to the inputs, the vector outputs provide higher order of control and attributes such as smoothness. Their curvatures or gradients at the points are scale invariant and they are more robust data sources for downstream applications and analysis. This dissertation explores and broadens the scope of vectorization in various contexts. I propose a novel vectorization algorithm on raster images along with several new applications for vectorization mechanism in processing and analysing both 2D and 3D data sets. The main components of the research are: using vectorization in generating 3D models from 2D floor plans; a novel raster image vectorization methods and its applications in computer vision, image processing, and animation; and vectorization in visualizing and information extraction in 3D laser scan data. I also apply vectorization analysis towards human body scans and rock surface scans to show insights otherwise difficult to obtain.
ContributorsYin, Xuetao (Author) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Femiani, John (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2016
Description
Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would

Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would not be apparent in tabular form. However, several critical challenges arise when visualizing and exploring these large spatiotemporal datasets. While, the underlying geographical component of the data lends itself well to univariate visualization in the form of traditional cartographic representations (e.g., choropleth, isopleth, dasymetric maps), as the data becomes multivariate, cartographic representations become more complex. To simplify the visual representations, analytical methods such as clustering and feature extraction are often applied as part of the classification phase. The automatic classification can then be rendered onto a map; however, one common issue in data classification is that items near a classification boundary are often mislabeled.

This thesis explores methods to augment the automated spatial classification by utilizing interactive machine learning as part of the cluster creation step. First, this thesis explores the design space for spatiotemporal analysis through the development of a comprehensive data wrangling and exploratory data analysis platform. Second, this system is augmented with a novel method for evaluating the visual impact of edge cases for multivariate geographic projections. Finally, system features and functionality are demonstrated through a series of case studies, with key features including similarity analysis, multivariate clustering, and novel visual support for cluster comparison.
ContributorsZhang, Yifan (Author) / Maciejewski, Ross (Thesis advisor) / Mack, Elizabeth (Committee member) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2016
Description
Time-series plots are used in many scientific and engineering applications. In this thesis, two new plug-ins for piecewise constant and event time-series are developed within the Eclipse BIRT (Business Intelligence and Reporting Tools) framework. These customizable plug-ins support superdense time, which is required for plotting the dynamics of Parallel DEVS

Time-series plots are used in many scientific and engineering applications. In this thesis, two new plug-ins for piecewise constant and event time-series are developed within the Eclipse BIRT (Business Intelligence and Reporting Tools) framework. These customizable plug-ins support superdense time, which is required for plotting the dynamics of Parallel DEVS models. These plug-ins are designed to receive time-based alphanumerical data sets from external computing sources, which can then be dynamically plotted. Static and dynamic time-series plotting are demonstrated in two settings. First, as standalone plug-ins, they can be used to create static plots, which can then be included in BIRT reports. Second, the plug-ins are integrated into the DEVS-Suite simulator where runtime simulated data generated from model components are dynamically plotted. Visual representation of data sets can simplify and improve model verification and simulation validation.
ContributorsSundaramoorthi, Savitha (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Maciejewski, Ross (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
Description
Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected

Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected by first responders on the ground in the affected region or by official agencies such as local governments involved in the response. However, the ubiquity of mobile devices has empowered people to publish information during a crisis through social media, such as the damage reports from a hurricane. Social media has thus emerged as an important channel of information which can be leveraged to improve crisis response. Twitter is a popular medium which has been employed in recent crises. However, it presents new challenges: the data is noisy and uncurated, and it has high volume and high velocity. In this work, I study four key problems in the use of social media for crisis response: effective monitoring and analysis of high volume crisis tweets, detecting crisis events automatically in streaming data, identifying users who can be followed to effectively monitor crisis, and finally understanding user behavior during crisis to detect tweets inside crisis regions. To address these problems I propose two systems which assist disaster responders or analysts to collaboratively collect tweets related to crisis and analyze it using visual analytics to identify interesting regions, topics, and users involved in disaster response. I present a novel approach to detecting crisis events automatically in noisy, high volume Twitter streams. I also investigate and introduce novel methods to tackle information overload through the identification of information leaders in information diffusion who can be followed for efficient crisis monitoring and identification of messages originating from crisis regions using user behavior analysis.
ContributorsKumar, Shamanth (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Maciejewski, Ross (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2015
Description
The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who

The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who carrying the APOE e4 allele than those who are APOE e4 noncarriers. Also, brain structure and function depend on APOE genotype not just for Alzheimer's disease patients but also in health elderly individuals, so APOE genotyping is considered critical in clinical trials of Alzheimer's disease. We used a large sample of elderly participants, with the help of a new automated surface registration system based on surface conformal parameterization with holomorphic 1-forms and surface fluid registration. In this system, we automatically segmented and constructed hippocampal surfaces from MR images at many different time points, such as 6 months, 1- and 2-year follow up. Between the two different hippocampal surfaces, we did the high-order correspondences, using a novel inverse consistent surface fluid registration method. At each time point, using Hotelling's T^2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes.
ContributorsLi, Bolun (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2015
Description
Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models.

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.
ContributorsTa, Duyan (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Wonka, Peter (Committee member) / Arizona State University (Publisher)
Created2013
Description
Identifying important variation patterns is a key step to identifying root causes of process variability. This gives rise to a number of challenges. First, the variation patterns might be non-linear in the measured variables, while the existing research literature has focused on linear relationships. Second, it is important to remove

Identifying important variation patterns is a key step to identifying root causes of process variability. This gives rise to a number of challenges. First, the variation patterns might be non-linear in the measured variables, while the existing research literature has focused on linear relationships. Second, it is important to remove noise from the dataset in order to visualize the true nature of the underlying patterns. Third, in addition to visualizing the pattern (preimage), it is also essential to understand the relevant features that define the process variation pattern. This dissertation considers these variation challenges. A base kernel principal component analysis (KPCA) algorithm transforms the measurements to a high-dimensional feature space where non-linear patterns in the original measurement can be handled through linear methods. However, the principal component subspace in feature space might not be well estimated (especially from noisy training data). An ensemble procedure is constructed where the final preimage is estimated as the average from bagged samples drawn from the original dataset to attenuate noise in kernel subspace estimation. This improves the robustness of any base KPCA algorithm. In a second method, successive iterations of denoising a convex combination of the training data and the corresponding denoised preimage are used to produce a more accurate estimate of the actual denoised preimage for noisy training data. The number of primary eigenvectors chosen in each iteration is also decreased at a constant rate. An efficient stopping rule criterion is used to reduce the number of iterations. A feature selection procedure for KPCA is constructed to find the set of relevant features from noisy training data. Data points are projected onto sparse random vectors. Pairs of such projections are then matched, and the differences in variation patterns within pairs are used to identify the relevant features. This approach provides robustness to irrelevant features by calculating the final variation pattern from an ensemble of feature subsets. Experiments are conducted using several simulated as well as real-life data sets. The proposed methods show significant improvement over the competitive methods.
ContributorsSahu, Anshuman (Author) / Runger, George C. (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2013
Description
In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.
ContributorsHayden, Thomas (Author) / Maciejewski, Ross (Thesis advisor) / Wang, Yalin (Committee member) / Runger, George C. (Committee member) / Mack, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
Description
This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the

This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the NVIDIA CUDA framework; however, the proposed solution in this document uses the Microsoft general-purpose computing on graphics processing units API. The implementation allows for the simulation of a large number of particles in a real-time scenario. The solution presented here uses the Smoothed Particles Hydrodynamics algorithm to calculate the forces within the fluid; this algorithm provides a Lagrangian approach for discretizes the Navier-Stockes equations into a set of particles. Our solution uses the DirectCompute compute shaders to evaluate each particle using the multithreading and multi-core capabilities of the GPU increasing the overall performance. The solution then describes a method for extracting the fluid surface using the Marching Cubes method and the programmable interfaces exposed by the DirectX pipeline. Particularly, this document presents a method for using the Geometry Shader Stage to generate the triangle mesh as defined by the Marching Cubes method. The implementation results show the ability to simulate over 64K particles at a rate of 900 and 400 frames per second, not including the surface reconstruction steps and including the Marching Cubes steps respectively.
ContributorsFigueroa, Gustavo (Author) / Farin, Gerald (Thesis advisor) / Maciejewski, Ross (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2012