Matching Items (8,544)
Filtering by

Clear all filters

Description

This item includes:

1) The official bracket files for the 2022 MMM tournament

2) A screen-reader enabled bracket file

3) 2022 March Mammal Madness Educational Materials Packet – in English

4) 2022 March Mammal Madness Educational Materials Packet – in Spanish

5) March Mammal Madness, Middle School Lesson Plan : Ecosystems & National Parks

6) March Mammal

This item includes:

1) The official bracket files for the 2022 MMM tournament

2) A screen-reader enabled bracket file

3) 2022 March Mammal Madness Educational Materials Packet – in English

4) 2022 March Mammal Madness Educational Materials Packet – in Spanish

5) March Mammal Madness, Middle School Lesson Plan : Ecosystems & National Parks

6) March Mammal Madness, High School Lesson Plan : Ecosystems & National Parks 

ContributorsHinde, Katie (Author) / Nickley, William (Author) / Light, Jessica (Author) / Nuñez-de la Mora, Alejandra (Author) / Kissel, Jenna (Author) / Hecht, Ian (Author) / Gabrys, Jennifer (Author) / Brunstrum, Jeff (Author) / Schuttler, Stephanie (Author) / Chestnut, Tara (Author) / Mahmoud, Marwa (Author)
Created2022
Description

Selected narrations, or Play by Plays, to illustrate how matches in the annual March Mammal Madness Tournament are conducted and communicated. Referenced in “March Mammal Madness and the Power of Narrative in Science Outreach” (full citation coming and will link to KEEP record once created).

ContributorsChestnut, Tara (Creator) / Connors, Patrice K. (Creator) / Desari, Mauna (Creator) / Hilborn, Anne W. (Creator) / Hinde, Katie (Creator) / Light, Jessica (Creator)
Open Educational Resources from 2020 March Mammal Madness Tournament
Description

This packet includes:

2020 Bracket Common Name

2020 Bracket Latin Binomial

Pre-Tournament Research Lesson Plan (English)

Tournament Lesson Plan & Worksheets (English)

Visual Arts Lesson Plan (English)

Language Arts Lesson Plan (English)

2020 Bracket Common Name (Spanish)

Pre-Tournament Research Lesson Plan (Spanish)

Tournament Lesson Plan & Worksheets (Spanish)

ContributorsHinde, Katie (Author) / Schuttler, Stephanie (Author) / Henning, Charon (Illustrator) / Nuñez-de la Mora, Alejandra (Translator)
Created2020
2019 March Mammal Madness Educator Materials
Description

This packet includes:

2019 Bracket

Pre-Tournament Research Lesson Plan (English)

Tournament Lesson Plan & Worksheets (English)

ContributorsHinde, Katie (Author) / Schuttler, Stephanie (Author) / Henning, Charon (Illustrator)
Created2019
2021 March Mammal Madness Educational Materials
Description

This packet includes:

 2021 Bracket Common Name 

2021 Bracket Latin Binomial 

Bracket FAQ (English) 

Pre-Tournament Research Lesson Plan (English) 

Tournament Lesson Plan & Worksheets (English) 

Visual Arts Lesson Plan (English) 

Language Arts Lesson Plan (English) 

Guide for Youngest Players (English)

JUMBO Bracket for Youngest Players (English)

2021 Bracket Common Name (Spanish) 

Pre-Tournament Research Lesson Plan (Spanish) 

Tournament Lesson Plan & Worksheets (Spanish) 

Visual

This packet includes:

 2021 Bracket Common Name 

2021 Bracket Latin Binomial 

Bracket FAQ (English) 

Pre-Tournament Research Lesson Plan (English) 

Tournament Lesson Plan & Worksheets (English) 

Visual Arts Lesson Plan (English) 

Language Arts Lesson Plan (English) 

Guide for Youngest Players (English)

JUMBO Bracket for Youngest Players (English)

2021 Bracket Common Name (Spanish) 

Pre-Tournament Research Lesson Plan (Spanish) 

Tournament Lesson Plan & Worksheets (Spanish) 

Visual Arts Lesson Plan (Spanish)

Language Arts Lesson Plan (Spanish) 

JUMBO Bracket for Youngest Players (Spanish) 

ContributorsHinde, Katie (Author) / Schuttler, Stephanie (Author) / Henning, Charon (Illustrator) / Nuñez-de la Mora, Alejandra (Translator) / Kissel, Jenna (Author) / Nickley, William (Artist)
Created2021-02
Phylogeny of March Mammal Madness Contestants: 2013-2024
Description

This phylogeny poster displays the relationships of all the combatants in the March Mammal Madness tournament 2013-2024. Included are:

  1. The PDF version of the poster
  2. The PNG version of the poster
  3. A list of references consulted for generating the poster.
ContributorsChen, Albert (Author)
Created2024-03-29
Description
Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.
ContributorsMorgan, Ashli M (Author) / Wang, Xu (Thesis advisor) / Allen, James (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015
Description
Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.
ContributorsLee, Soochan (Author) / Phelan, Patrick E (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Taylor, Robert A. (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2015
Description
Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model

Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model physics derived in a cosmological setting - (I) It is shown that primordial gravitational waves left over from inflation carry unique detectable CMB signatures for neutrino masses, axions and any other relativistic species that may have been present. (II) Higgs Inflation, the most popular and compelling inflation model with a higgs boson is studied next and it is shown that quantum effects have so far been incorrectly incorporated. A spurious gauge ambiguity arising from quantum effects enters the canonical prediction for observables in Higgs Inflation that must be addressed. (III) A new novel mechanism for generating the observed baryon asymmetry of the universe via decaying gravitinos is proposed. If the Supersymmetry (SUSY) breaking scale is high, then in the presence of R-parity violation, gravitinos can successfully reproduce the baryon asymmetry and evade all low energy constraints. (IV) The final chapter reports on a new completely general analysis of simplified models used in direct detection of dark matter. This is useful to explore what high energy physics constraints can be obtained from direct detection experiments.
ContributorsSabharwal, Subir (Author) / Krauss, Lawrence M (Thesis advisor) / Vachaspati, Tanmay (Thesis advisor) / Mauskopf, Philip D (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015