Matching Items (62)
Filtering by
- Genre: Doctoral Dissertation
- Creators: Ayyanar, Raja

Description
The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC are presented by several research works in the past, the computational complexity associated with TC has been a major deterrent to its implementation. The proposed work develops heuristics for TC and investigates its potential to improve the computational time for TC for various applications. The objective is to develop computationally light methods to harness the flexibility of the grid to derive maximum benefits to the system in terms of reliability. One of the goals of this research is to develop a tool that will be capable of providing TC actions in a minimal time-frame, which can be readily adopted by the industry for real-time corrective applications.
A DC based heuristic, i.e., a greedy algorithm, is developed and applied to improve the computational time for the TC problem while still maintaining the ability to find quality solutions. In the greedy algorithm, an expression is derived, which indicates the impact on the objective for a marginal change in the state of a transmission line. This expression is used to generate a priority list with potential candidate lines for switching, which may provide huge improvements to the system. The advantage of this method is that it is a fast heuristic as compared to using mixed integer programming (MIP) approach.
Alternatively, AC based heuristics are developed for TC problem and tested on actual data from PJM, ERCOT and TVA. AC based N-1 contingency analysis is performed to identify the contingencies that cause network violations. Simple proximity based heuristics are developed and the fast decoupled power flow is solved iteratively to identify the top five TC actions, which provide reduction in violations. Time domain simulations are performed to ensure that the TC actions do not cause system instability. Simulation results show significant reductions in violations in the system by the application of the TC heuristics.
A DC based heuristic, i.e., a greedy algorithm, is developed and applied to improve the computational time for the TC problem while still maintaining the ability to find quality solutions. In the greedy algorithm, an expression is derived, which indicates the impact on the objective for a marginal change in the state of a transmission line. This expression is used to generate a priority list with potential candidate lines for switching, which may provide huge improvements to the system. The advantage of this method is that it is a fast heuristic as compared to using mixed integer programming (MIP) approach.
Alternatively, AC based heuristics are developed for TC problem and tested on actual data from PJM, ERCOT and TVA. AC based N-1 contingency analysis is performed to identify the contingencies that cause network violations. Simple proximity based heuristics are developed and the fast decoupled power flow is solved iteratively to identify the top five TC actions, which provide reduction in violations. Time domain simulations are performed to ensure that the TC actions do not cause system instability. Simulation results show significant reductions in violations in the system by the application of the TC heuristics.
ContributorsBalasubramanian, Pranavamoorthy (Author) / Hedman, Kory W (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2016

Description
Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS) simulators are inadequate to represent the dynamic behavior of these devices accurately. On the other hand, simulating a large system using an electromagnetic transient (EMT) simulator is computationally impractical. EMT-TS hybrid simulation approach is an alternative to address these challenges. Furthermore, to thoroughly analyze the increased interactions among the transmission and distribution systems, an integrated modeling and simulation approach is essential.
The thesis is divided into three parts. The first part focuses on an improved hybrid simulation approach and software development. Compared to the previous work, the pro-posed approach has three salient features: three-sequence TS simulation algorithm, three-phase/three-sequence network equivalencing and flexible switching of the serial and par-allel interaction protocols.
The second part of the thesis concentrates on the applications of the hybrid simula-tion tool. The developed platform is first applied to conduct a detailed fault-induced de-layed voltage recovery (FIDVR) study on the Western Electricity Coordinating Council (WECC) system. This study uncovers that after a normally cleared single line to ground fault at the transmission system could cause air conditioner motors to stall in the distribu-tion systems, and the motor stalling could further propagate to an unfaulted phase under certain conditions. The developed tool is also applied to simulate power systems inter-faced with HVDC systems, including classical HVDC and the new generation voltage source converter (VSC)-HVDC system.
The third part centers on the development of integrated transmission and distribution system simulation and an advanced hybrid simulation algorithm with a capability of switching from hybrid simulation mode to TS simulation. Firstly, a modeling framework suitable for integrated transmission and distribution systems is proposed. Secondly, a power flow algorithm and a diakoptics based dynamic simulation algorithm for the integrated transmission and distribution system are developed. Lastly, the EMT-TS hybrid simulation algorithm is combined with the diakoptics based dynamic simulation algorithm to realize flexible simulation mode switching to increase the simulation efficiency.
The thesis is divided into three parts. The first part focuses on an improved hybrid simulation approach and software development. Compared to the previous work, the pro-posed approach has three salient features: three-sequence TS simulation algorithm, three-phase/three-sequence network equivalencing and flexible switching of the serial and par-allel interaction protocols.
The second part of the thesis concentrates on the applications of the hybrid simula-tion tool. The developed platform is first applied to conduct a detailed fault-induced de-layed voltage recovery (FIDVR) study on the Western Electricity Coordinating Council (WECC) system. This study uncovers that after a normally cleared single line to ground fault at the transmission system could cause air conditioner motors to stall in the distribu-tion systems, and the motor stalling could further propagate to an unfaulted phase under certain conditions. The developed tool is also applied to simulate power systems inter-faced with HVDC systems, including classical HVDC and the new generation voltage source converter (VSC)-HVDC system.
The third part centers on the development of integrated transmission and distribution system simulation and an advanced hybrid simulation algorithm with a capability of switching from hybrid simulation mode to TS simulation. Firstly, a modeling framework suitable for integrated transmission and distribution systems is proposed. Secondly, a power flow algorithm and a diakoptics based dynamic simulation algorithm for the integrated transmission and distribution system are developed. Lastly, the EMT-TS hybrid simulation algorithm is combined with the diakoptics based dynamic simulation algorithm to realize flexible simulation mode switching to increase the simulation efficiency.
ContributorsHuang, Qiuhua (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John M. (Committee member) / Heydt, Gerald T. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016

Description
Constraint relaxation by definition means that certain security, operational, or financial constraints are allowed to be violated in the energy market model for a predetermined penalty price. System operators utilize this mechanism in an effort to impose a price-cap on shadow prices throughout the market. In addition, constraint relaxations can serve as corrective approximations that help in reducing the occurrence of infeasible or extreme solutions in the day-ahead markets. This work aims to capture the impact constraint relaxations have on system operational security. Moreover, this analysis also provides a better understanding of the correlation between DC market models and AC real-time systems and analyzes how relaxations in market models propagate to real-time systems. This information can be used not only to assess the criticality of constraint relaxations, but also as a basis for determining penalty prices more accurately.
Constraint relaxations practice was replicated in this work using a test case and a real-life large-scale system, while capturing both energy market aspects and AC real-time system performance. System performance investigation included static and dynamic security analysis for base-case and post-contingency operating conditions. PJM peak hour loads were dynamically modeled in order to capture delayed voltage recovery and sustained depressed voltage profiles as a result of reactive power deficiency caused by constraint relaxations. Moreover, impacts of constraint relaxations on operational system security were investigated when risk based penalty prices are used. Transmission lines in the PJM system were categorized according to their risk index and each category was as-signed a different penalty price accordingly in order to avoid real-time overloads on high risk lines.
This work also extends the investigation of constraint relaxations to post-contingency relaxations, where emergency limits are allowed to be relaxed in energy market models. Various scenarios were investigated to capture and compare between the impacts of base-case and post-contingency relaxations on real-time system performance, including the presence of both relaxations simultaneously. The effect of penalty prices on the number and magnitude of relaxations was investigated as well.
Constraint relaxations practice was replicated in this work using a test case and a real-life large-scale system, while capturing both energy market aspects and AC real-time system performance. System performance investigation included static and dynamic security analysis for base-case and post-contingency operating conditions. PJM peak hour loads were dynamically modeled in order to capture delayed voltage recovery and sustained depressed voltage profiles as a result of reactive power deficiency caused by constraint relaxations. Moreover, impacts of constraint relaxations on operational system security were investigated when risk based penalty prices are used. Transmission lines in the PJM system were categorized according to their risk index and each category was as-signed a different penalty price accordingly in order to avoid real-time overloads on high risk lines.
This work also extends the investigation of constraint relaxations to post-contingency relaxations, where emergency limits are allowed to be relaxed in energy market models. Various scenarios were investigated to capture and compare between the impacts of base-case and post-contingency relaxations on real-time system performance, including the presence of both relaxations simultaneously. The effect of penalty prices on the number and magnitude of relaxations was investigated as well.
ContributorsSalloum, Ahmed (Author) / Vittal, Vijay (Thesis advisor) / Hedman, Kory (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016

Description
A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system.
In the first section, a pulse width modulated (PWM) peak current mode boost regulator is utilized. The overall boost regulator system and its related sub-cells are explained. Among them, an original error amplifier design, a current sensing circuit and slope compensation circuit are presented.
In the second section – the focus of this dissertation – a highly accurate constant current LED driver system design is unveiled. The detailed description of this highly accurate LED driver system and its related sub-cells are presented. A hybrid PWM and linear current modulation scheme to adjust the LED driver output currents is explained. The novel design ideas to improve the LED current accuracy and channel-to-channel output current mismatch are also explained in detail. These ideas include a novel LED driver system architecture utilizing 1) a dynamic current mirror structure and 2) a closed loop structure to keep the feedback loop of the LED driver active all the time during both PWM on-duty and PWM off-duty periods. Inside the LED driver structure, the driving amplifier with a novel slew rate enhancement circuit to dramatically accelerate its response time is also presented.
In the first section, a pulse width modulated (PWM) peak current mode boost regulator is utilized. The overall boost regulator system and its related sub-cells are explained. Among them, an original error amplifier design, a current sensing circuit and slope compensation circuit are presented.
In the second section – the focus of this dissertation – a highly accurate constant current LED driver system design is unveiled. The detailed description of this highly accurate LED driver system and its related sub-cells are presented. A hybrid PWM and linear current modulation scheme to adjust the LED driver output currents is explained. The novel design ideas to improve the LED current accuracy and channel-to-channel output current mismatch are also explained in detail. These ideas include a novel LED driver system architecture utilizing 1) a dynamic current mirror structure and 2) a closed loop structure to keep the feedback loop of the LED driver active all the time during both PWM on-duty and PWM off-duty periods. Inside the LED driver structure, the driving amplifier with a novel slew rate enhancement circuit to dramatically accelerate its response time is also presented.
ContributorsWang, Ge (Author) / Holbert, Keith E. (Thesis advisor) / Song, Hongjiang (Committee member) / Ayyanar, Raja (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016

Description
Present distribution infrastructure is designed mainly for uni-directional power flow with well-controlled generation. An increase in the inverter-interfaced photovoltaic (PV) systems requires a thorough re-examination of the design, operation, protection and control of distribution systems. In order to understand the impact of high penetration of PV generation, this work conducts an automated and detailed modeling of a power distribution system. The simulation results of the modeled distribution feeder have been verified with the field measurements.
Based on the feeder model, this work studies the impact of the PV systems on voltage profiles under various scenarios, including reallocation of the PV systems, reactive power support from the PV inverters, and settings of the load-tap changing transformers in coordination with the PV penetration. Design recommendations have been made based on the simulation results to improve the voltage profiles in the feeder studied.
To carry out dynamic studies related to high penetration of PV systems, this work proposes a differential algebraic equation (DAE) based dynamic modeling and analysis method. Different controllers including inverter current controllers, anti-islanding controllers and droop controllers, are designed and tested in large systems. The method extends the capability of the distribution system analysis tools, to help conduct dynamic analyses in large unbalanced distribution systems.
Another main contribution of this work is related to the investigation of the PV impacts on the feeder protection coordination. Various protection coordination types, including fuse-fuse, recloser-fuse, relay-fuse and relay-recloser have been studied. The analyses provide a better understanding of the relay and recloser settings under different configurations of the PV interconnection transformers, PV penetration levels, and fault types.
A decision tree and fuzzy logic based fault location identification process has also been proposed in this work. The process is composed of the off-line training of the decision tree, and the on-line analysis of the fault events. Fault current contribution from the PV systems, as well as the variation of the fault resistance have been taken into consideration. Two actual fault cases with the event data recorded were used to examine the effectiveness of the fault identification process.
Based on the feeder model, this work studies the impact of the PV systems on voltage profiles under various scenarios, including reallocation of the PV systems, reactive power support from the PV inverters, and settings of the load-tap changing transformers in coordination with the PV penetration. Design recommendations have been made based on the simulation results to improve the voltage profiles in the feeder studied.
To carry out dynamic studies related to high penetration of PV systems, this work proposes a differential algebraic equation (DAE) based dynamic modeling and analysis method. Different controllers including inverter current controllers, anti-islanding controllers and droop controllers, are designed and tested in large systems. The method extends the capability of the distribution system analysis tools, to help conduct dynamic analyses in large unbalanced distribution systems.
Another main contribution of this work is related to the investigation of the PV impacts on the feeder protection coordination. Various protection coordination types, including fuse-fuse, recloser-fuse, relay-fuse and relay-recloser have been studied. The analyses provide a better understanding of the relay and recloser settings under different configurations of the PV interconnection transformers, PV penetration levels, and fault types.
A decision tree and fuzzy logic based fault location identification process has also been proposed in this work. The process is composed of the off-line training of the decision tree, and the on-line analysis of the fault events. Fault current contribution from the PV systems, as well as the variation of the fault resistance have been taken into consideration. Two actual fault cases with the event data recorded were used to examine the effectiveness of the fault identification process.
ContributorsTang, Yingying (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Heydt, Gerald (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2016

Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011

Description
An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distri- bution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of the PV generators during the variation in the distribution system states is necessary when studying the effects of controller bandwidths, multiple voltage correction devices, and anti-islanding. This work explores the use of dynamic phasors and differential algebraic equations (DAE) for impact analysis of the PV generators on the existing distribution feeders.
The voltage unbalance induced by PV generators can aggravate the existing unbalance due to load mismatch. An increased phase unbalance significantly adds to the neutral currents, excessive neutral to ground voltages and violate the standards for unbalance factor. The objective of this study is to analyze and quantify the impacts of unbalanced PV installations on a distribution feeder. Additionally, a power electronic converter solution is proposed to mitigate the identified impacts and validate the solution's effectiveness through detailed simulations in OpenDSS.
The benefits associated with the use of energy storage systems for electric- utility-related applications are also studied. This research provides a generalized framework for strategic deployment of a lithium-ion based energy storage system to increase their benefits in a distribution feeder. A significant amount of work has been performed for a detailed characterization of the life cycle costs of an energy storage system. The objectives include - reduction of the substation transformer losses, reduction of the life cycle cost for an energy storage system, and accommodate the PV variability.
The distribution feeder laterals in the distribution feeder with relatively high PV generation as compared to the load can be operated as microgrids to achieve reliability, power quality and economic benefits. However, the renewable resources are intermittent and stochastic in nature. A novel approach for sizing and scheduling the energy storage system and microtrubine is proposed for reliable operation of microgrids. The size and schedule of the energy storage system and microturbine are determined using Benders' decomposition, considering the PV generation as a stochastic resource.
The voltage unbalance induced by PV generators can aggravate the existing unbalance due to load mismatch. An increased phase unbalance significantly adds to the neutral currents, excessive neutral to ground voltages and violate the standards for unbalance factor. The objective of this study is to analyze and quantify the impacts of unbalanced PV installations on a distribution feeder. Additionally, a power electronic converter solution is proposed to mitigate the identified impacts and validate the solution's effectiveness through detailed simulations in OpenDSS.
The benefits associated with the use of energy storage systems for electric- utility-related applications are also studied. This research provides a generalized framework for strategic deployment of a lithium-ion based energy storage system to increase their benefits in a distribution feeder. A significant amount of work has been performed for a detailed characterization of the life cycle costs of an energy storage system. The objectives include - reduction of the substation transformer losses, reduction of the life cycle cost for an energy storage system, and accommodate the PV variability.
The distribution feeder laterals in the distribution feeder with relatively high PV generation as compared to the load can be operated as microgrids to achieve reliability, power quality and economic benefits. However, the renewable resources are intermittent and stochastic in nature. A novel approach for sizing and scheduling the energy storage system and microtrubine is proposed for reliable operation of microgrids. The size and schedule of the energy storage system and microturbine are determined using Benders' decomposition, considering the PV generation as a stochastic resource.
ContributorsNagarajan, Adarsh (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015

Description
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve.
As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired.
One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones.
Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.
As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired.
One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones.
Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.
ContributorsWang, Fengyu (Author) / Hedman, Kory W. (Thesis advisor) / Zhang, Muhong (Committee member) / Tylavsky, Daniel J. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015

Description
Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration.
This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.
Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.
The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.
Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.
The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
ContributorsKorad, Akshay Shashikumar (Author) / Hedman, Kory W (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2015

Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013