Matching Items (93)
Filtering by

Clear all filters

Description
One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To

One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the exchange of ideas, purpose, and objectives, through the formation of associations, links, and relations. Mastering an understanding of the Blogosphere can greatly help facilitate the needs of the ever growing number of these users, as well as producers, service providers, and advertisers into facilitation of the categorization and navigation of this vast environment. This work explores a novel method to leverage the collective wisdom from the infused label space for blog search and discovery. The work demonstrates that the wisdom space can provide a most unique and desirable framework to which to discover the highly sought after background information that could aid in the building of classifiers. This work incorporates this insight into the construction of a better clustering of blogs which boosts the performance of classifiers for identifying more relevant labels for blogs, and offers a mechanism that can be incorporated into replacing spurious labels and mislabels in a multi-labeled space.
ContributorsGalan, Magdiel F (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
Description
Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference blur level. The past studies on blur discrimination have measured

Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference blur level. The past studies on blur discrimination have measured the sensitivity of the human visual system to blur using 2D test patterns. In this dissertation, subjective tests are performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. The results of this study indicate that, in the symmetric stereo viewing case, binocular disparity does not affect the blur discrimination thresholds for the selected 3D test patterns. In the asymmetric viewing case, the blur discrimination thresholds decreased and the decrease in threshold values is found to be dominated by the eye observing the higher blur.



The second part of the dissertation focuses on texture granularity in the context of 2D images. A texture granularity database referred to as GranTEX, consisting of textures with varying granularity levels is constructed. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective index that automatically measures the perceived granularity level of textures is also presented. It is shown that the proposed granularity metric correlates well with the subjective granularity scores and outperforms the other methods presented in the literature.

A subjective study is conducted to assess the effect of compression on textures with varying degrees of granularity. A logarithmic function model is proposed as a fit to the subjective test data. It is demonstrated that the proposed model can be used for rate-distortion control by allowing the automatic selection of the needed compression ratio for a target visual quality. The proposed model can also be used for visual quality assessment by providing a measure of the visual quality for a target compression ratio.

The effect of texture granularity on the quality of synthesized textures is studied. A subjective study is presented to assess the quality of synthesized textures with varying levels of texture granularity using different types of texture synthesis methods. This work also proposes a reduced-reference visual quality index referred to as delta texture granularity index for assessing the visual quality of synthesized textures.
ContributorsSubedar, Mahesh M (Author) / Karam, Lina (Thesis advisor) / Abousleman, Glen (Committee member) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2015
Description
The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.

In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.

This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.
ContributorsZhu, Tong (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / Bliss, Daniel (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2016
Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand,

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.

First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).

Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
ContributorsShi, Jie, Ph.D (Author) / Wang, Yalin (Thesis advisor) / Caselli, Richard (Committee member) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2016
Description
Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail.

Approximately 1\% of the total world population are stroke survivors, making it the most common neurological disorder. This increasing demand for rehabilitation facilities has been seen as a significant healthcare problem worldwide. The laborious and expensive process of visual monitoring by physical therapists has motivated my research to invent novel strategies to supplement therapy received in hospital in a home-setting. In this direction, I propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system.

The rapid technological advancements in computing and sensing has resulted in large amounts of data which requires powerful tools to analyze. In the recent past, topological data analysis methods have been investigated in various communities, and the work by Carlsson establishes that persistent homology can be used as a powerful topological data analysis approach for effectively analyzing large datasets. I have explored suitable topological data analysis methods and propose a framework for human activity analysis utilizing the same for applications such as action recognition.
ContributorsVenkataraman, Vinay (Author) / Turaga, Pavan (Thesis advisor) / Papandreou-Suppappol, Antonia (Committee member) / Krishnamurthi, Narayanan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016
Description
The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects.

Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort to acquire sufficient amount of labeled data for model learning. Second, existing attribute learning work for visual objects focuses primarily on images, with semantic analysis on videos left largely unexplored.

In this dissertation I conduct innovative research and propose novel approaches to tackling the aforementioned problems. In particular, I propose robust and accurate learning frameworks on both attribute ranking and prediction by exploring the correlation among multiple attributes and utilizing various types of label information. Furthermore, I propose a video-based skill coaching framework by extending attribute learning to the video domain for robust motion skill analysis. Experiments on various types of applications and datasets and comparisons with multiple state-of-the-art baseline approaches confirm that my proposed approaches can achieve significant performance improvements for the general attribute learning problem.
ContributorsChen, Lin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2016
Description
While discrete emotions like joy, anger, disgust etc. are quite popular, continuous

emotion dimensions like arousal and valence are gaining popularity within the research

community due to an increase in the availability of datasets annotated with these

emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle

and complex affect dimensions but are

While discrete emotions like joy, anger, disgust etc. are quite popular, continuous

emotion dimensions like arousal and valence are gaining popularity within the research

community due to an increase in the availability of datasets annotated with these

emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle

and complex affect dimensions but are difficult to predict.

Dimension reduction techniques form the core of emotion recognition systems and

help create a new feature space that is more helpful in predicting emotions. But these

techniques do not necessarily guarantee a better predictive capability as most of them

are unsupervised, especially in regression learning. In emotion recognition literature,

supervised dimension reduction techniques have not been explored much and in this

work a solution is provided through probabilistic topic models. Topic models provide

a strong probabilistic framework to embed new learning paradigms and modalities.

In this thesis, the graphical structure of Latent Dirichlet Allocation has been explored

and new models tuned to emotion recognition and change detection have been built.

In this work, it has been shown that the double mixture structure of topic models

helps 1) to visualize feature patterns, and 2) to project features onto a topic simplex

that is more predictive of human emotions, when compared to popular techniques

like PCA and KernelPCA. Traditionally, topic models have been used on quantized

features but in this work, a continuous topic model called the Dirichlet Gaussian

Mixture model has been proposed. Evaluation of DGMM has shown that while modeling

videos, performance of LDA models can be replicated even without quantizing

the features. Until now, topic models have not been explored in a supervised context

of video analysis and thus a Regularized supervised topic model (RSLDA) that

models video and audio features is introduced. RSLDA learning algorithm performs

both dimension reduction and regularized linear regression simultaneously, and has outperformed supervised dimension reduction techniques like SPCA and Correlation

based feature selection algorithms. In a first of its kind, two new topic models, Adaptive

temporal topic model (ATTM) and SLDA for change detection (SLDACD) have

been developed for predicting concept drift in time series data. These models do not

assume independence of consecutive frames and outperform traditional topic models

in detecting local and global changes respectively.
ContributorsLade, Prasanth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Balasubramanian, Vineeth N (Committee member) / Arizona State University (Publisher)
Created2015
Description
As people age, the desire to grow old independently and in place becomes larger and takes greater importance in their lives. Successful aging involves the physical, mental and social well-being of an individual. To enable successful aging of older adults, it is necessary for them to perform both activities of

As people age, the desire to grow old independently and in place becomes larger and takes greater importance in their lives. Successful aging involves the physical, mental and social well-being of an individual. To enable successful aging of older adults, it is necessary for them to perform both activities of daily living (ADL) and instrumental activities of daily living (IADL). Embedded assessment has made it possible to assess an individual's functional ability in-place, however the success of any technology depends largely on the user than the technology itself. Previous researches in in-situ functional assessment systems have heavily focused on the technology rather than on the user. This dissertation takes a user-centric approach to this problem by trying to identify the design and technical challenges of deploying and using a functional assessment system in the real world.

To investigate this line of research, a case study was conducted with 4 older adults in their homes, interviews were conducted with 8 caregivers and a controlled lab experiment was conducted with 8 young healthy adults at ASU, to test the sensors. This methodology provides a significant opportunity to advance the scientific field by expanding the present focus on IADL task performance to an integrated assessment of ADL and IADL task performance. Doing so would not only be more effective in identifying functional decline but could also provide a more comprehensive assessment of individuals' functional abilities with independence and also providing the caregivers with much needed respite.

The controlled lab study tested the sensors embedded into daily objects and found them to be reliable, and efficient. Short term exploratory case studies with healthy older adults revealed the challenges associated with design and technical aspects of the current system, while inductive analysis performed on interviews with caregivers helped to generate central themes on which future functional assessment systems need to be designed and built. The key central themes were a) focus on design / user experience, b) consider user's characteristics, personality, behavior and functional ability, c) provide support for independence, and d) adapt to individual user's needs.
ContributorsRavishankar, Vijay Kumar (Author) / Burleson, Winslow (Thesis advisor) / Coon, David (Committee member) / Mahoney, Diane (Committee member) / Walker, Erin (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
Description
In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems.

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.
ContributorsChattopadhyay, Rita (Author) / Panchanathan, Sethuraman (Thesis advisor) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013