Matching Items (49)
Filtering by
- Genre: Masters Thesis
- Genre: Interactive multimedia--Authoring programs--Design.
- Creators: Turaga, Pavan

Description
Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea behind discontinuity is locating the abrupt changes in intensity of images, as are often seen in edges or boundaries. Similarity subdivides an image into regions that fit the pre-defined criteria. The algorithm utilized in this thesis is the second category.
This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
ContributorsHan, Dongmin (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015

Description
Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a linear diffusion model, and in the absence of noise, classical observability theory describes whether or not the system's initial state can be deduced from a given set of linear measurements. However, it does not describe to what degree the system is observable. Different metrics of observability have been proposed in literature to address this issue. Many of these methods are based on choosing optimal or sub-optimal sensor schedules from a predetermined collection of possibilities. This thesis proposes two greedy algorithms for a one-dimensional and two-dimensional discrete diffusion processes. The first algorithm considers a deterministic linear dynamical system and deterministic linear measurements. The second algorithm considers noise on the measurements and is compared to a Kalman filter scheduling method described in published work.
ContributorsNajam, Anbar (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Chao (Committee member) / Arizona State University (Publisher)
Created2016

Description
In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the video sequence in a lower dimensional expression subspace and also as a linear dynamical system using Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann space, we use Grassmann manifold based learning techniques such as kernel Fisher Discriminant Analysis with Grassmann kernels for classification. We consider six expressions namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su) for classification. We perform experiments on extended Cohn-Kanade (CK+) facial expression database to evaluate the expression recognition performance. Our method demonstrates good expression recognition performance outperforming other state of the art FER algorithms. We achieve an average recognition accuracy of 97.41% using a method based on expression subspace, kernel-FDA and Support Vector Machines (SVM) classifier. By using a simpler classifier, 1-Nearest Neighbor (1-NN) along with kernel-FDA, we achieve a recognition accuracy of 97.09%. We find that to process a group of 19 frames in a video sequence, LBP feature extraction requires majority of computation time (97 %) which is about 1.662 seconds on the Intel Core i3, dual core platform. However when only 3 frames (onset, middle and peak) of a video sequence are used, the computational complexity is reduced by about 83.75 % to 260 milliseconds at the expense of drop in the recognition accuracy to 92.88 %.
ContributorsYellamraju, Anirudh (Author) / Chakrabarti, Chaitali (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2014

Description
Fisheye cameras are special cameras that have a much larger field of view compared to
conventional cameras. The large field of view comes at a price of non-linear distortions
introduced near the boundaries of the images captured by such cameras. Despite this
drawback, they are being used increasingly in many applications of computer vision,
robotics, reconnaissance, astrophotography, surveillance and automotive applications.
The images captured from such cameras can be corrected for their distortion if the
cameras are calibrated and the distortion function is determined. Calibration also allows
fisheye cameras to be used in tasks involving metric scene measurement, metric
scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.
This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
conventional cameras. The large field of view comes at a price of non-linear distortions
introduced near the boundaries of the images captured by such cameras. Despite this
drawback, they are being used increasingly in many applications of computer vision,
robotics, reconnaissance, astrophotography, surveillance and automotive applications.
The images captured from such cameras can be corrected for their distortion if the
cameras are calibrated and the distortion function is determined. Calibration also allows
fisheye cameras to be used in tasks involving metric scene measurement, metric
scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.
This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
ContributorsKashyap Takmul Purushothama Raju, Vinay (Author) / Karam, Lina (Thesis advisor) / Turaga, Pavan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014

Description
The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from multiple temporal samples of the signal received at a single antenna. These estimators enable identification of resources, such as the orthogonal complement of the occupied subspace, that may be exploitable by an opportunistic user. This concept is supported by simulations showing the estimation of the number of users in a simple CDMA system using a maximum a posteriori (MAP) estimate for the rank. It was found that with suitable parameters, such as high SNR, sufficient number of time epochs and codes of appropriate length, the number of users could be correctly estimated using the MAP estimator even when the noise variance is unknown. Additionally, the process of identifying the maximum likelihood estimate of the orthogonal projector onto the unoccupied subspace is discussed.
ContributorsBeaudet, Kaitlyn (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014

Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015

Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013

Description
Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated with the query. In general, human networks are good in answering imprecise queries. We try to use the social network of a person to answer his query. Our research aims at designing a framework that exploits the user's social network in order to maximize the answers for a given query. Exploiting an user's social network has several challenges. The major challenge is that the user's immediate social circle may not possess the answer for the given query, and hence the framework designed needs to carry out the query diffusion process across the network. The next challenge involves in finding the right set of seeds to pass the query to in the user's social circle. One other challenge is to incentivize people in the social network to respond to the query and thereby maximize the quality and quantity of replies. Our proposed framework is a mobile application where an individual can either respond to the query or forward it to his friends. We simulated the query diffusion process in three types of graphs: Small World, Random and Preferential Attachment. Given a type of network and a particular query, we carried out the query diffusion by selecting seeds based on attributes of the seed. The main attributes are Topic relevance, Replying or Forwarding probability and Time to Respond. We found that there is a considerable increase in the number of replies attained, even without saturating the user's network, if we adopt an optimal seed selection process. We found the output of the optimal algorithm to be satisfactory as the number of replies received at the interrogator's end was close to three times the number of neighbors an interrogator has. We addressed the challenge of incentivizing people to respond by associating a particular amount of points for each query asked, and awarding the same to people involved in answering the query. Thus, we aim to design a mobile application based on our proposed framework so that it helps in maximizing the replies for the interrogator's query by diffusing the query across his/her social network.
ContributorsSwaminathan, Neelakantan (Author) / Sundaram, Hari (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013

Description
Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks. Recent literature shows that many computer vision and image processing problems can be solved by using the matrix completion theory. This thesis explores the application of matrix completion in video denoising. A state-of-the-art video denoising algorithm in which the denoising task is modeled as a matrix completion problem is chosen for detailed study. The contribution of this thesis lies in both providing extensive analysis to bridge the gap in existing literature on matrix completion frame work for video denoising and also in proposing some novel techniques to improve the performance of the chosen denoising algorithm. The chosen algorithm is implemented for thorough analysis. Experiments and discussions are presented to enable better understanding of the problem. Instability shown by the algorithm at some parameter values in a particular case of low levels of pure Gaussian noise is identified. Artifacts introduced in such cases are analyzed. A novel way of grouping structurally-relevant patches is proposed to improve the algorithm. Experiments show that this technique is useful, especially in videos containing high amounts of motion. Based on the observation that matrix completion is not suitable for denoising patches containing relatively low amount of image details, a framework is designed to separate patches corresponding to low structured regions from a noisy image. Experiments are conducted by not subjecting such patches to matrix completion, instead denoising such patches in a different way. The resulting improvement in performance suggests that denoising low structured patches does not require a complex method like matrix completion and in fact it is counter-productive to subject such patches to matrix completion. These results also indicate the inherent limitation of matrix completion to deal with cases in which noise dominates the structural properties of an image. A novel method for introducing priorities to the ranked patches in matrix completion is also presented. Results showed that this method yields improved performance in general. It is observed that the artifacts in presence of low levels of pure Gaussian noise appear differently after introducing priorities to the patches and the artifacts occur at a wider range of parameter values. Results and discussion suggesting future ways to explore this problem are also presented.
ContributorsMaguluri, Hima Bindu (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Claveau, Claude (Committee member) / Arizona State University (Publisher)
Created2013

Description
One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.
ContributorsKamasamudram, Anurag (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013