Matching Items (5,445)
Filtering by
- Genre: Masters Thesis
- Genre: Interactive multimedia--Design.

Description
Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea behind discontinuity is locating the abrupt changes in intensity of images, as are often seen in edges or boundaries. Similarity subdivides an image into regions that fit the pre-defined criteria. The algorithm utilized in this thesis is the second category.
This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
ContributorsHan, Dongmin (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015

Description
This thesis examines the narratives and meta-commentary of Indonesian users of English about their English as a Second Language (ESL) experiences. It approaches interview data with ten Indonesian second language (L2) speakers of English from a narrative analysis/inquiry perspective. Each interview was transcribed according to a modified set of discourse analysis (DA) transcription conventions, then coded by the researcher. The first research question addressed what linguistic devices members of this population used to achieve cohesion and coherence in their narratives, and the second research question examined how members of this population portrayed their L2 selves in their narratives. The data yielded 21 linguistic devices that fell into three levels of frequency. Connectives, discourse markers, and repetition were by far the most common linguistic devices, followed by adverbials, embedded clauses, intensifiers, and the word like (non-comparison uses), which were somewhat frequent linguistic devices. The data also showed that participants constructed their L2 selves using three main categories: agency, identity, and perceptions of English and the U.S.. In regard to identity, participants invoked membership categorization, where they portrayed their identities in relation to other individuals. The study concludes with suggestions for future research, especially relating to Indonesian L2 users of English.
ContributorsTappendorf, Rebecca C (Author) / Renaud, Claire (Thesis advisor) / Prior, Matthew (Committee member) / Gelderen, Elly van (Committee member) / Arizona State University (Publisher)
Created2015

Description
ABSTRACT
Objective: This research examined the effectiveness of a weight loss diet incorporating high protein pasta and breakfast cereal products as compared to a weight loss diet using conventional versions of gluten-free pasta and breakfast cereal.
Design: In a 6-week parallel-arm food trial (representing the first phase of a 12-week cross-over trial), 26 overweight and obese (Mean BMI 43.1 ± 12.4 kg/m²) participants, free of related comorbidities, were randomly assigned to the Zone diet (~29% energy intake from protein) or a control diet (~9% energy from protein). Participants were included in the trial if they satisfied the criteria for elevated risk for metabolic syndrome (top half of the TG/HDL ratios of all who were tested). Participants were instructed to eat prepared meals (total of 7 cereal packets and 14 pasta meals weekly) that included patented food technologies for the Zone diet and commercially available gluten-free rice pasta and a conventional name brand boxed cereal for the control diet. Body composition was measured with a bioelectrical impedance scale at weeks 1, and 6. Food records and diet adherence were recorded daily by the participants.
Results: Both the Zone and control diets resulted in significant weight loss (-2.9 ± 3.1 kg vs. -2.7 ± 2.6 kg respectively) over time (p = 0.03) but not between groups (p = 0.96). Although not statistically significant, the Zone diet appears to have influenced more weight loss at trial weeks 3, 4, and 5 (p = 0.46) than the control diet. The change in FFM was significant (p = 0.02) between the Zone and control groups (1.4 ± 3.6 kg vs. -0.6 ± 1.5 kg respectively) at week-6. Study adherence did not differ significantly between diet groups (p = 0.53).
Conclusions: Energy-restricted diets are effective for short-term weight loss and high protein intake appears to promote protein sparing and preservation of FFM during weight loss. The macronutrient profile of the diet does not appear to influence calorie intake, but it does appear to influence the quality of weight loss. Other measures of body composition and overall health outcomes should be examined by future studies to appropriately identify the potential health effects between these diet types.
Objective: This research examined the effectiveness of a weight loss diet incorporating high protein pasta and breakfast cereal products as compared to a weight loss diet using conventional versions of gluten-free pasta and breakfast cereal.
Design: In a 6-week parallel-arm food trial (representing the first phase of a 12-week cross-over trial), 26 overweight and obese (Mean BMI 43.1 ± 12.4 kg/m²) participants, free of related comorbidities, were randomly assigned to the Zone diet (~29% energy intake from protein) or a control diet (~9% energy from protein). Participants were included in the trial if they satisfied the criteria for elevated risk for metabolic syndrome (top half of the TG/HDL ratios of all who were tested). Participants were instructed to eat prepared meals (total of 7 cereal packets and 14 pasta meals weekly) that included patented food technologies for the Zone diet and commercially available gluten-free rice pasta and a conventional name brand boxed cereal for the control diet. Body composition was measured with a bioelectrical impedance scale at weeks 1, and 6. Food records and diet adherence were recorded daily by the participants.
Results: Both the Zone and control diets resulted in significant weight loss (-2.9 ± 3.1 kg vs. -2.7 ± 2.6 kg respectively) over time (p = 0.03) but not between groups (p = 0.96). Although not statistically significant, the Zone diet appears to have influenced more weight loss at trial weeks 3, 4, and 5 (p = 0.46) than the control diet. The change in FFM was significant (p = 0.02) between the Zone and control groups (1.4 ± 3.6 kg vs. -0.6 ± 1.5 kg respectively) at week-6. Study adherence did not differ significantly between diet groups (p = 0.53).
Conclusions: Energy-restricted diets are effective for short-term weight loss and high protein intake appears to promote protein sparing and preservation of FFM during weight loss. The macronutrient profile of the diet does not appear to influence calorie intake, but it does appear to influence the quality of weight loss. Other measures of body composition and overall health outcomes should be examined by future studies to appropriately identify the potential health effects between these diet types.
ContributorsJames, Andrew (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2015

Description
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
ContributorsPendota, Premchand (Author) / Herrmann, Marcus (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015

Description
Natural variations in 238U/235U of marine carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~ 8.5 to study possible U isotope fractionation during incorporation into these minerals.
Small but significant U isotope fractionation was observed in aragonite experiments at pH ~ 8.5, with heavier U in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007+0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3 (aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.
These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, [Ca], or [Mg] concentrations. In general, these effects are likely to be small (<0.13 ‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U.
Small but significant U isotope fractionation was observed in aragonite experiments at pH ~ 8.5, with heavier U in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007+0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3 (aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.
These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, [Ca], or [Mg] concentrations. In general, these effects are likely to be small (<0.13 ‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U.
ContributorsChen, Xinming (Author) / Anbar, Ariel (Thesis advisor) / Herckes, Pierre (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015

ContributorsJavidahmadabadi, Mahdi (Author) / Kitchen, Jennifer (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2015

Description
There is a strong medical need and important therapeutic applications for improved wireless bioelectric interfaces to the nervous system. Multichannel devices are desired for neural control of robotic prosthetics that interface to remaining nerves in limb stumps of amputees and as alternatives to traditional wired arrays used in for some types of brain stimulation. This present work investigates a new approach to ultrasound-powering of implantable microelectronic devices within the tissue that may better support such applications. These devices are of ultra-miniature size that is enabled by a wireless technique. This study investigates two types of ultrasound-powered neural interfaces for multichannel sensory feedback in neurostimulation. The piezoceramics lead zirconate titanate (PZT) ceramic and polyvinylidene fluoride (PVDF) polymer were the primary materials used to build the devices. They convert ultrasound to electricity that when rectified by a diode produce a current output that is neuro stimulatory to peripheral nerve or the neurons in the brain. Multichannel devices employ a form of spatial multiplexing that directs focused ultrasound towards localized and segmented regions of PVDF or PZT that allows independent channels of nerve actuation. Different frequencies of ultrasound were evaluated for best results. Firstly, a 2.25 MHz frequency signal that is reasonably penetrating through body tissue to an implant several centimeters deep and also a 5 MHz frequency more suited to application for actuation of devices within a less than a centimeter of nerve. Results show multichannel device performance to have a complex inter-relationship with frequency, size and thickness, angular incidence, channel separations, and number of folds (layers connected in series and parallel). The output electrical port impedances of PVDF devices were examined in relationship to that of stimulating electrodes and tissue interfaces. Miniature multichannel devices were constructed using an unreported method of employing state of the art laser cutting systems. The results show that PVDF based devices have advantages over PZT, because of better acoustic coupling with tissue, known better biocompatibility, and better separation between multiple channels. However, the PZT devices proved to be better overall in terms of compactness and higher outputs for a given ultrasound power level.
ContributorsNanda Kumar, Yashwanth (Author) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2015

Description
Excessive gestational weight gain (GWG) during pregnancy is a major public health concern. Studies have reported more than 70% of pregnant women gain excessive weight which may pose increased maternal and fetal risks. Little is known about the relationships of GWG to behavioral factors (i.e., physical activity, sleep, social support) and maternal mental health (i.e., stress, anxiety, depression) during pregnancy. This descriptive, cross-sectional study explored the relationships of GWG to behavioral factors and maternal mental health during pregnancy. Secondarily, this study described the preferences, uses of, and interests in alternative approaches as well as the mental health differences between users and non-users of alternative approaches during pregnancy. A national survey was administered to women ≥8 weeks pregnant, ≥18 years old, and residing in the United States (N=968). Bivariate correlations were used to determine relationships between GWG and variables of interest. Independent t-tests were used to observe mental health differences between users and non-users of alternative approaches. Data were analyzed throughout pregnancy and by trimester. Throughout pregnancy, significant relationships were found in GWG to stressful events (r=-.112, p<.01), depression (r=.066, p<.05), mindfulness (r=-.067, p<.05), and sleep (r=.089, p<.01). When GWG was assessed by trimester, stressful events were significant in the second (r=-.216, p<.01) and third trimesters (r=-.085, p<.05). Depression remained positively related to GWG in the first (r=.409, p<.01) and second trimesters (r=.162, p<.01). A positive relationship emerged between GWG and anxiety in the first trimester (r=.340, p<.01) and physical activity became significant in the second (r=-.136; p<.05) and third trimesters (r=-.100; p<.05). Mindfulness was the only variable significantly related to GWG throughout all time points. Mean anxiety (d=.236; p=.001) and depression (d=.265; p<.001) scores were significantly lower in users compared to non-users of alternative approaches throughout pregnancy and when assessed by trimester anxiety (d=.424; p=.001) and depression (d=.526; p<.001) were significant in the second trimester. This study provides a framework for future analyses in GWG and maternal mental health. The information presented here may inform future interventions to test the effectiveness of alternative approaches to simultaneously manage maternal mental health and GWG due to the integrative nature of alternative approaches.
ContributorsMatthews, Jennifer L. (Author) / Huberty, Jennifer L (Thesis advisor) / Leiferman, Jenn (Committee member) / Larkey, Linda (Committee member) / McClain, Darya (Committee member) / Arizona State University (Publisher)
Created2015

Description
Vitamin D deficiency has been previously associated with a higher Alzheimer’s disease (AD) risk, a condition marked by dependent living and severe cognitive impairment. AD is histologically defined by the presence of brain amyloid beta (Aβ) plaques and neurofibrillary tangles. Ways to enhance Aβ clearance have been examined in order to sustain cognition and delay AD onset. In vitro and in vivo studies suggest that vitamin D might enhance brain Aβ transportation to the periphery by up-regulating P-glycoprotein production. The purpose of this study was to examine the effect of vitamin D supplementation on plasma Aβ in an older population.
This study was a parallel-arm, double-blinded, randomized control trial. Participants consumed either a vitamin D supplement or placebo once a week for eight weeks (n=23). Only vitamin D insufficient (serum total 25-OH, D < 30 ng/mL) people were included in the study, and all participants were considered to be cognitively normal (MMSE scores > 27). Serum total 25-OH, D and plasma Aβ1-40 measurements were recorded before and after the eight-week trial. The plasma Aβ1-40 change was compared between the vitamin D group and control group.
The vitamin D group experienced a 45% greater change in plasma Aβ1-40 than the control group. The effect size was 0.228 when controlling for baseline plasma Aβ1-40 (p=0.045), 0.197 when controlling for baseline plasma Aβ1-40 and baseline physical activity (p=0.085), and 0.179 when controlling for baseline plasma Aβ1-40, baseline physical activity, and age (p=0.116). In conclusion, vitamin D supplementation might increase brain Aβ clearance in humans, but physical activity and age also appear to modulate Aβ metabolism.
This study was a parallel-arm, double-blinded, randomized control trial. Participants consumed either a vitamin D supplement or placebo once a week for eight weeks (n=23). Only vitamin D insufficient (serum total 25-OH, D < 30 ng/mL) people were included in the study, and all participants were considered to be cognitively normal (MMSE scores > 27). Serum total 25-OH, D and plasma Aβ1-40 measurements were recorded before and after the eight-week trial. The plasma Aβ1-40 change was compared between the vitamin D group and control group.
The vitamin D group experienced a 45% greater change in plasma Aβ1-40 than the control group. The effect size was 0.228 when controlling for baseline plasma Aβ1-40 (p=0.045), 0.197 when controlling for baseline plasma Aβ1-40 and baseline physical activity (p=0.085), and 0.179 when controlling for baseline plasma Aβ1-40, baseline physical activity, and age (p=0.116). In conclusion, vitamin D supplementation might increase brain Aβ clearance in humans, but physical activity and age also appear to modulate Aβ metabolism.
ContributorsMiller, Brendan Joseph (Author) / Johnston, Carol (Thesis advisor) / Whisner, Corrie (Committee member) / Tasevska, Natasha (Committee member) / Arizona State University (Publisher)
Created2015

Description
Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States.
ContributorsWhitney, Kristen M (Author) / Vivoni, Enrique R (Thesis advisor) / Farmer, Jack D (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2015