Matching Items (10)
Filtering by
- Genre: Masters Thesis

Description
There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing linear temporal logic as mission specification language for robot motion planning due to its expressiveness and scalability. Several algorithms have been proposed to achieve autonomous temporal logic planning. Also, several frameworks are designed to compose those discrete planners and continuous controllers to make sure the actual trajectory also satisfies the mission specification. However, most of these works use first-order kinematic models which are not accurate when quadrotors fly at high speed and cannot fully utilize the potential of quadrotors.
This thesis work describes a new design for a hierarchical hybrid controller that is based on a dynamic model and seeks to achieve better performance in terms of speed and accuracy compared with some previous works. Furthermore, the proposed hierarchical controller is making progress towards guaranteed satisfaction of mission specification expressed in Linear Temporal Logic for dynamic systems. An event-driven receding horizon planner is also utilized that aims at distributed and decentralized planning for large-scale navigation scenarios. The benefits of this approach will be demonstrated using simulations results.
This thesis work describes a new design for a hierarchical hybrid controller that is based on a dynamic model and seeks to achieve better performance in terms of speed and accuracy compared with some previous works. Furthermore, the proposed hierarchical controller is making progress towards guaranteed satisfaction of mission specification expressed in Linear Temporal Logic for dynamic systems. An event-driven receding horizon planner is also utilized that aims at distributed and decentralized planning for large-scale navigation scenarios. The benefits of this approach will be demonstrated using simulations results.
ContributorsZhang, Xiaotong (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2016

Description
This work explores combining state-of-the-art \gls{mbrl} algorithms focused on learning complex policies with large state-spaces and augmenting them with distributional reward perspective on \gls{rl} algorithms. Distributional \gls{rl} provides a probabilistic reward formulation as opposed to the classic \gls{rl} formulation which models the estimation of this distributional return. These probabilistic reward formulations help the agent choose highly risk-averse actions, which in turn makes the learning more stable. To evaluate this idea, I experiment in simulation on complex high-dimensional environments when subject under different noisy conditions.
ContributorsAgarwal, Nikhil (Author) / Ben Amor, Heni (Thesis advisor) / Phielipp, Mariano (Committee member) / DV, Hemanth (Committee member) / Arizona State University (Publisher)
Created2021

Description
Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert and, as a result, the scope of a robot's autonomy and ability to safely explore and learn in new and unforeseen environments is constrained by the specifics of the designed reward function. In this thesis, I design and implement a stateful collision anticipation model with powerful predictive capability based upon my research of sequential data modeling and modern recurrent neural networks. I also develop deep reinforcement learning methods whose rewards are generated by self-supervised training and intrinsic signals. The main objective is to work towards the development of resilient robots that can learn to anticipate and avoid damaging interactions by combining visual and proprioceptive cues from internal sensors. The introduced solutions are inspired by pain pathways in humans and animals, because such pathways are known to guide decision-making processes and promote self-preservation. A new "robot dodge ball' benchmark is introduced in order to test the validity of the developed algorithms in dynamic environments.
ContributorsRichardson, Trevor W (Author) / Ben Amor, Heni (Thesis advisor) / Yang, Yezhou (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2018

Description
This dissertation is focused on developing an algorithm to provide current state estimation and future state predictions for biomechanical human walking features. The goal is to develop a system which is capable of evaluating the current action a subject is taking while walking and then use this to predict the future states of biomechanical features.
This work focuses on the exploration and analysis of Interaction Primitives (Amor er al, 2014) and their relevance to biomechanical prediction for human walking. Built on the framework of Probabilistic Movement Primitives, Interaction Primitives utilize an EKF SLAM algorithm to localize and map a distribution over the weights of a set of basis functions. The prediction properties of Bayesian Interaction Primitives were utilized to predict real-time foot forces from a 9 degrees of freedom IMUs mounted to a subjects tibias. This method shows that real-time human biomechanical features can be predicted and have a promising link to real-time controls applications.
This work focuses on the exploration and analysis of Interaction Primitives (Amor er al, 2014) and their relevance to biomechanical prediction for human walking. Built on the framework of Probabilistic Movement Primitives, Interaction Primitives utilize an EKF SLAM algorithm to localize and map a distribution over the weights of a set of basis functions. The prediction properties of Bayesian Interaction Primitives were utilized to predict real-time foot forces from a 9 degrees of freedom IMUs mounted to a subjects tibias. This method shows that real-time human biomechanical features can be predicted and have a promising link to real-time controls applications.
ContributorsClark, Geoffrey Mitchell (Author) / Ben Amor, Heni (Thesis advisor) / Si, Jennie (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018

Description
This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods for covariance matrices is established. The use of shrinkage improves estimation accuracy of the curvature matrix when data samples are scarce. This thesis also introduce several insights that result in data- and computation-efficient update equations. Empirical results suggest that the proposed method compares favorably with existing second-order techniques based on the Fisher or Gauss-Newton and with adaptive stochastic gradient descent methods on both supervised and reinforcement learning tasks.
ContributorsBarron, Trevor (Author) / Ben Amor, Heni (Thesis advisor) / He, Jingrui (Committee member) / Levihn, Martin (Committee member) / Arizona State University (Publisher)
Created2019

Description
Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some methods also depend on high-precision meta-data which is not always available. This thesis proposes a complementary detection approach based on an entirely new source of information: the movement patterns of other nearby vehicles. This approach is robust to traditional sources of error, and may serve as a viable supplemental detection method. Several different classification models are presented for inferring traffic light status based on these patterns. Their performance is evaluated over real-world and simulation data sets, resulting in up to 97% accuracy in each set.
ContributorsCampbell, Joseph (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016

Description
Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of automated planning, namely model-lite planning and multi-agent planning. For model-lite planning, I focus on a prominent model named Annotated PDDL and it's related application of robust planning. For this model, I try to identify a method of leveraging additional domain information (available in the form of successful plan traces). I use this information to refine the set of possible domains to generate more robust plans (as compared to the original planner) for any given problem. This method also provides us a way of overcoming one of the major drawbacks of the original approach, namely the need for a domain writer to explicitly identify the annotations.
For the second topic, the central question I ask is ``{\em under what conditions are multiple agents actually needed to solve a given planning problem?}''. To answer this question, the multi-agent planning (MAP) problem is classified into several sub-classes and I identify the conditions in each of these sub-classes that can lead to required cooperation (RC). I also identify certain sub-classes of multi-agent planning problems (named DVC-RC problems), where the problems can be simplified using a single virtual agent. This insight is later used to propose a new planner designed to solve problems from these subclasses. Evaluation of this new planner on all the current multi-agent planning benchmarks reveals that most current multi-agent planning benchmarks only belong to a small subset of possible classes of multi-agent planning problems.
For the second topic, the central question I ask is ``{\em under what conditions are multiple agents actually needed to solve a given planning problem?}''. To answer this question, the multi-agent planning (MAP) problem is classified into several sub-classes and I identify the conditions in each of these sub-classes that can lead to required cooperation (RC). I also identify certain sub-classes of multi-agent planning problems (named DVC-RC problems), where the problems can be simplified using a single virtual agent. This insight is later used to propose a new planner designed to solve problems from these subclasses. Evaluation of this new planner on all the current multi-agent planning benchmarks reveals that most current multi-agent planning benchmarks only belong to a small subset of possible classes of multi-agent planning problems.
ContributorsSreedharan, Sarath (Author) / Kambhampati, Subbarao (Thesis advisor) / Zhang, Yu (Thesis advisor) / Ben Amor, Heni (Committee member) / Arizona State University (Publisher)
Created2016

Description
Robot motion and control remains a complex problem both in general and inthe field of machine learning (ML). Without ML approaches, robot controllers are
typically designed manually, which can take considerable time, generally requiring
accounting for a range of edge cases and often producing models highly constrained
to specific tasks. ML can decrease the time it takes to create a model while simultaneously allowing it to operate on a broader range of tasks. The utilization of neural
networks to learn from demonstration is, in particular, an approach with growing
popularity due to its potential to quickly fit the parameters of a model to mimic
training data.
Many such neural networks, especially in the realm of transformer-based architectures, act more as planners, taking in an initial context and then generating a
sequence from that context one step at a time. Others hybridize the approach, predicting a latent plan and conditioning immediate actions on that plan. Such approaches may limit a model’s ability to interact with a dynamic environment, needing to replan to fully update its understanding of the environmental context. In this
thesis, Language-commanded Scene-aware Action Response (LanSAR) is proposed as
a reactive transformer-based neural network that makes immediate decisions based
on previous actions and environmental changes. Its actions are further conditioned
on a language command, serving as a control mechanism while also narrowing the
distribution of possible actions around this command. It is shown that LanSAR successfully learns a strong representation of multimodal visual and spatial input, and
learns reasonable motions in relation to most language commands. It is also shown
that LanSAR can struggle with both the accuracy of motions and understanding the
specific semantics of language commands
ContributorsHardy, Adam (Author) / Ben Amor, Heni (Thesis advisor) / Srivastava, Siddharth (Committee member) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2024

Description
Natural Language plays a crucial role in human-robot interaction as it is the common ground where human beings and robots can communicate and understand each other. However, most of the work in natural language and robotics is majorly on generating robot actions using a natural language command, which is a unidirectional way of communication. This work focuses on the other direction of communication, where the approach allows a robot to describe its actions from sampled images and joint sequences from the robot task. The importance of this work is that it utilizes multiple modalities, which are the start and end images from the robot task environment and the joint trajectories of the robot arms. The fusion of different modalities is not just about fusing the data but knowing what information to extract from which data sources in such a way that the language description represents the state of the manipulator and the environment that it is performing the task on. From the experimental results of various simulated robot environments, this research demonstrates that utilizing multiple modalities improves the accuracy of the natural language description, and efficiently fusing the modalities is crucial in generating such descriptions by harnessing most of the various data sources.
ContributorsKALIRATHINAM, KAMALESH (Author) / Ben Amor, Heni (Thesis advisor) / Phielipp, Mariano (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2021

Description
The volume of scientific research is growing at an exponential rate over the past100 years. With the advent of the internet and ubiquitous access to the web, academic research search engines such as Google Scholar, Microsoft Academic, etc., have become the go-to platforms for systemic reviews and search. Although many academic search engines host lots of content, they provide minimal context about where the search terms matched. Many of these search engines also fail to provide additional tools which can help enhance a researcher’s understanding of research content outside their respective websites. An example of such a tool can be a browser extension/plugin that surfaces context-relevant information about a research article when the user reads a research article. This dissertation discusses a solution developed to bring more intrinsic characteristics of research documents such as the structure of the research document, tables in the document, the keywords associated with the document to improve search capabilities and augment the information a researcher may read. The prototype solution named Sci-Genie(https://sci-genie.com/) is a search engine over scientific articles from Computer Science ArXiv. Sci-Genie parses research papers and indexes research documents’ structure to provide context-relevant information about the matched search fragments. The same search engine also powers a browser extension to augment the information about a research article the user may be reading. The browser extension augments the user’s interface with information about tables from the cited papers, other papers by the same authors, and even the citations to and from the current article. The browser extension is further powered with access endpoints that leverage a machine learning model to filter tables comparing various entities. The dissertation further discusses these machine learning models and some baselines that help classify whether a table is comparing various entities or not. The dissertation finally concludes by discussing the current shortcomings of Sci-Genie and possible future research scope based on learnings after building Sci-Genie.
ContributorsDave, Valay (Author) / Zou, Jia (Thesis advisor) / Ben Amor, Heni (Thesis advisor) / Candan, Kasim Selcuk (Committee member) / Arizona State University (Publisher)
Created2021