Filtering by
- Language: English
- Member of: Metis Center for Infrastructure and Sustainable Engineering
- Member of: ASU Library Collection

Academic libraries seek to engage people with information resources and maximize use of library spaces. When users increasingly rely on digital rather than print resources, libraries respond by shifting space usage from stacks to user working and reading spaces. How then do we, as academic library professionals, best keep print collections on public view and maximize user engagement?
In this whitepaper, we focus on fostering engagement with print resources among\nlibrary users, particularly with open stack print collections and users within the local community. We advocate moving toward a more flexible, more user-focused service that makes library collections easier to understand and to use. Libraries need to work with their surrounding communities in the further development and presentation of their collections. We offer a flexible, a la carte approach to transforming open stack academic library print collection management. We have developed a three-tiered system of potential approaches and actions for academic libraries to foster engagement with their collections. We also include materials and tools to help guide individual libraries towards a data-driven approach to print curation that may be tailored to their local context. We hope that these approaches and tools aid academic libraries in helping users engage in meaningful dialogues with print resources.
As part of a $50,000 planning grant from the Andrew W. Mellon Foundation, the analysis is aimed at fostering engagement with print resources among library users, particularly with open stack print collections and users within the local community. "The Future of the Academic Library Print Collection: A Space for Engagement" explores a three-tiered system of potential approaches and actions for academic libraries to foster engagement with their collections, and includes materials and tools to help guide individual libraries towards a data-driven approach to print curation that may be tailored to their local context.

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for a target region, which could be transformed into a heat exposure model by means of simulation and spatial-temporal joining. By combining and implementing the most robust software and data available, Icarus was able to capture person-based exposure with unparalleled detail. Here we describe the model methodology. We use the metropolitan region of Phoenix, Arizona, USA to carry out a case study using Icarus.


Enhancing an academic library renovation project with creative open stack print collections services
This paper describes how Arizona State University Library used creativity and novel approaches to collections design and implementation processes to select open stack print books for a newly renovated academic research library. Using results from a workshop focused on rethinking the future of print within educational learning and research environments, the Collections Services and Analysis unit within Arizona State University Library performed a series of experiments to better understand the purpose and use of print collections within 21st century library design. The authors describe the creative processes used in collections design and three types of selection approaches that invited engagement with open stacks. These three types were: small browsing collections co-curated with community members, a medium-sized print collection selected for student engagement, and a large research collection selected using a novel data analysis of four factors affecting the likelihood of potential use. Using more than one million volumes as the basis for selection, approximately 185,000 volumes were installed in the renovated library through a complex implementation across four library locations. The authors discuss the key role that creativity played in the approaches, methods, and results of these efforts and offer recommendations for collection management teams seeking to maximize their pursuit of community engagement with print collections within contemporary academic library spaces.

Syllabi from 16 Life Cycle Assessment courses across 14 U.S. universities were examined for content, structure, and opportunity for coordinated efforts into the future.

Heat exposure for urban populations has become more prevalent as the temperature and duration of heat waves in cities increase. Occupational exposure to heat is a major concern for personal health, and excessive heat exposure can cause devastating outcomes. While occupational heat exposure studies have traditionally focused on environmental temperature, work intensity, and clothing, little is known about the daily exposure profile of workers, including their daily travel and working patterns. This study developed a novel measure of exposure and reprieve dynamics, the moving average hourly exposure (MAHE) to balance short-duration but high-exposure events and capture the inability to reprieve from exposure events. MAHE was assessed by combining an activity-based travel model (ABM) and the Occupational Requirement Survey to simulate urban workers' total daily heat exposure. The simulation considers daily travel, work schedules, and outdoor working frequency. The simulation was conducted for 1 million workers in Phoenix, Arizona, using Mean Radiant Temperature (MRT). The results show that 53% to 89% of workers in Phoenix's construction, agriculture, transportation, raw material extraction, and entertainment industries will likely experience MAHE over 38°C for at least an hour. These industries also have up to 34% of the laborers exposed to over 7 hours of continuous 38°C and above MAHE exposure. The location of the most intense heat exposure was identified near the downtown and central business districts, significantly different from the home locations of the workers in suburban and rural areas. Formulating the MAHE balances heat risk events with cooling benefits and aids in identifying individuals with prolonged high heat exposure.

Abstract:
Cascading failures across a network propagate localized issues to more broad and potentially unexpected failures in the network. In power networks, where load must be delivered in real-time by a generation source, network layout is an important part of cascading failure analysis. In lieu of real power network data protected for security reasons, we can use synthetic networks for academic purposes in developing a validating methodology. A contingency analysis technique is used to identify cascading failures, and this involves randomly selecting initial failure points in the network and observing how current violations propagate across the network. This process is repeated many times to understand the breadth of potential failures that may occur, and the observed trends in failure propagation are analyzed and compared to generate recommendations to prevent and adapt to failure. Emphasis is placed on power transmission networks where failures can be more catastrophic.
