Filtering by
- Creators: ASU Library. Music Library
This project dives into the journey of our entrepreneurial startup with the Founders Lab Thesis Program. In the global sports business industry, we knew that there was something missing. While conducting market research, there was little data and information about sustainability initiatives that engaged sports fans, especially in college sports. Not to mention, there was no sustainability information provided on any existing platforms that sporting teams use for ticketing and advertising. So, for our startup, we decided to create a website called SustainSports which gives fans the opportunity to inform themselves about sustainability initiatives at sports events (https://sustainsports.webflow.io/). These fans can also earn points and rewards for practicing sustainability activities at home. In short, SustainSports serves as an educational, interactive, and informative website that connects users to sustainability initiatives, community activities, and exciting rewards, while encouraging users to continue such environmentally-friendly practices in their daily lives. In chronological order, this thesis paper will examine the process we took to create SustainSports and demonstrate our efforts that properly allowed us to defend it one academic year later. From meetings with renowned sports enthusiasts and professors to interviews with ASU students and sports fans, we have listened to and taken in diverse perspectives to understand the perceptions of sustainability in the global sports industry. When we realized that there was a significant gap between sports and sustainability - both important elements of American society and culture - we knew a change needed to be made. Hence, SustainSports came to life, offering users a fresh opportunity to be more aware of their sustainability surroundings, while simultaneously enjoying the sports they know and love.
This project dives into the journey of our entrepreneurial startup with the Founders Lab Thesis Program. In the global sports business industry, we knew that there was something missing. While conducting market research, there was little data and information about sustainability initiatives that engaged sports fans, especially in college sports. Not to mention, there was no sustainability information provided on any existing platforms that sporting teams use for ticketing and advertising. So, for our startup, we decided to create a website called SustainSports which gives fans the opportunity to inform themselves about sustainability initiatives at sports events (https://sustainsports.webflow.io/). These fans can also earn points and rewards for practicing sustainability activities at home. In short, SustainSports serves as an educational, interactive, and informative website that connects users to sustainability initiatives, community activities, and exciting rewards, while encouraging users to continue such environmentally friendly practices in their daily lives. In chronological order, this thesis paper will examine the process we took to create SustainSports and demonstrate our efforts that properly allowed us to defend it one academic year later. From meetings with renowned sports enthusiasts and professors to interviews with ASU students and sports fans, we have listened to and taken in diverse perspectives to understand the perceptions of sustainability in the global sports industry. When we realized that there was a significant gap between sports and sustainability - both important elements of American society and culture - we knew a change needed to be made. Hence, SustainSports came to life, offering users a fresh opportunity to be more aware of their sustainability surroundings, while simultaneously enjoying the sports they know and love.
This project dives into the journey of our entrepreneurial startup with the Founders Lab Thesis Program. In the global sports business industry, we knew that there was something missing. While conducting market research, there was little data and information about sustainability initiatives that engaged sports fans, especially in college sports. Not to mention, there was no sustainability information provided on any existing platforms that sporting teams use for ticketing and advertising. So, for our startup, we decided to create a website called SustainSports which gives fans the opportunity to inform themselves about sustainability initiatives at sports events (https://sustainsports.webflow.io/). These fans can also earn points and rewards for practicing sustainability activities at home. In short, SustainSports serves as an educational, interactive, and informative website that connects users to sustainability initiatives, community activities, and exciting rewards, while encouraging users to continue such environmentally-friendly practices in their daily lives. In chronological order, this thesis paper will examine the process we took to create SustainSports and demonstrate our efforts that properly allowed us to defend it one academic year later. From meetings with renowned sports enthusiasts and professors to interviews with ASU students and sports fans, we have listened to and taken in diverse perspectives to understand the perceptions of sustainability in the global sports industry. When we realized that there was a significant gap between sports and sustainability - both important elements of American society and culture - we knew a change needed to be made. Hence, SustainSports came to life, offering users a fresh opportunity to be more aware of their sustainability surroundings, while simultaneously enjoying the sports they know and love.
The mental health of ASU students has been negatively affected by the pandemic. Our research looks to prove that COVID-19 has caused an increase in stress levels while uncovering other relationships to stress. We obtained our data by conducting a survey through Google Forms that was exclusively accessible to ASU students. Stress levels were measured with the use of the Perceived Stress Scale (PSS). We find that the stress of ASU students from before the pandemic to during rises from 15 to 22 points, a 50% increase (n = 228). We discovered that women are more stressed than men before and during the pandemic. We also discovered that there is no difference between stresses among different races. We notice that there is a parabolic relationship between enrollment time and stress levels with the peak occurring during semesters 2-6. We also conclude that students who attended more than 5 events during the pandemic had lower stress scores, and those who had their videos on for at least 3 events had lower stress scores. Furthermore, students who utilized campus resources to manage their stress had higher stress levels than those who did not.
The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that resembles playing tunes. Originally the idea was to split the audio into left and right, then to further segregate the signals to have a treble, mid, and base emitter for each side. Due to time, budget, and scope constraints, we decided to complete the project with only two coils.<br/><br/>For this project, the team decided to use a solid-state coil kit. This kit was purchased from OneTelsa and would help ensure everyone’s safety and the project’s success. The team developed our own interrupting or driving circuit through reverse-engineering the interrupter provided by oneTesla and discussing with other engineers. The custom interpreter was controlled by the PSoC5 LP and communicated with an audio source through the DFRobot Bluetooth module. Utilizing the left and right audio signals it can drive the two Tesla Coils in stereo to play the music.
The purpose of this creative project was to create a stereo sound system in a unique medium. As a team, we decided to integrate a Tesla Coil with a bluetooth audio source. These high frequency, high voltage systems can be configured to emit their electrical discharge in a manner that resembles playing tunes. Originally the idea was to split the audio into left and right, then to further segregate the signals to have a treble, mid, and base emitter for each side. Due to time, budget, and scope constraints, we decided to complete the project with only two coils.<br/><br/>For this project, the team decided to use a solid-state coil kit. This kit was purchased from OneTelsa and would help ensure everyone’s safety and the project’s success. The team developed our own interrupting or driving circuit through reverse-engineering the interrupter provided by oneTesla and discussing with other engineers. The custom interpreter was controlled by the PSoC5 LP and communicated with an audio source through the DFRobot Bluetooth module. Utilizing the left and right audio signals it can drive the two Tesla Coils in stereo to play the music.
The ongoing Global Coronavirus Pandemic has been upheving social norms for over a year at this point. For countless people, our lives look very different at this point in time than they did before the pandemic began. Quarantine, Shelter in Place, Work from Home, and Online classes have led global populations to become less active leading to an increase in sedentary lifestyles. The final impact of this consequence is unknown, but emerging studies have led to concrete evidence of decreased physical and mental wellbeing, particularly in children. VirusFreeSports was the brainchild of three ASU Honors students who sought to remedy these devastating consequences by creating environments where children can participate in sports and exercise safely, free of the threat COVID-19 or other transmissible illnesses. The ultimate goal for the project team was to build traction for their idea, which culminated in a video pitch sent to potential investors. Although largely created as an exercise and we did not create a full certification course, merely a prototype through a website with sample questions to gauge interest, the project was a success as a large target market for this product was identified that showed great promise. Our team believes that early entrance to the market, as well as the lack of any other competitors would give the team a tremendous advantage in creating an impactful and influential service.
This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.
This thesis worked towards the development of a parameterized 3D model off a cover that could go over any specific prosthesis depending on the parameters that had been entered. It also focused on gathering user inputs, which was done with the aid of the Amputee Coalition, that could be used to create an aesthetic design on this cover. The Amputee Coalition helped to recruit participants through its website and social media platforms. Finally, multiple methods of creating a design were developed to increase the amount of customization that a user could have for their cover.
Due to the vast increase in processing power and energy usage in computing, a need for greater heat dissipation is prevalent. With numerous applications demanding cheaper and more efficient options for thermal management, new technology must be employed. Through the use of additive manufacturing, designs and structures can be created that were not physically possible before without extensive costs. The goal is to design a system that utilizes capillary action, which is the ability for liquids to flow through narrow spaces unassisted. The level of detail required may be achieved with direct metal laser sintering (DMLS) and stereolithography (SLA) 3D printing.