Matching Items (13,019)
Filtering by

Clear all filters

Description
How humans coordinate digit forces to perform dexterous manipulation is not well understood. This gap is due to the use of tasks devoid of dexterity requirements and/or the use of analytical techniques that cannot isolate the roles that digit forces play in preventing object slip and controlling object position and

How humans coordinate digit forces to perform dexterous manipulation is not well understood. This gap is due to the use of tasks devoid of dexterity requirements and/or the use of analytical techniques that cannot isolate the roles that digit forces play in preventing object slip and controlling object position and orientation (pose). In our recent work, we used a dexterous manipulation task and decomposed digit forces into FG, the internal force that prevents object slip, and FM, the force responsible for object pose control. Unlike FG, FM was modulated from object lift onset to hold, suggesting their different sensitivity to sensory feedback acquired during object lift. However, the extent to which FG and FM can be controlled independently remains to be determined. To address this gap, we systematically changed either object mass or external torque. The FM normal component responsible for object orientation control was modulated to changes in object torque but not mass. In contrast, FG was distinctly modulated to changes in object mass and torque. These findings point to a differential sensitivity of FG and FM to task requirements and provide novel insights into the neural control of dexterous manipulation. Importantly, our results indicate that the proposed digit force decomposition has the potential to capture important differences in how sensory inputs are processed and integrated to simultaneously ensure grasp stability and dexterous object pose control.
ContributorsNoll, William (Author) / Santello, Marco (Thesis director) / Wu, Yen-Hsun (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
Description
Multiple Sclerosis (MS) is a debilitating neurological disease that affects millions of individuals across the world. There is no current cure for the disease, so much of the patient treatment is focused on management of the disease. One of the potential effects of having MS is having a decrease in

Multiple Sclerosis (MS) is a debilitating neurological disease that affects millions of individuals across the world. There is no current cure for the disease, so much of the patient treatment is focused on management of the disease. One of the potential effects of having MS is having a decrease in balance which leads to a greater risk in sustaining a fall. It has been found in previous studies that MS patients have slower reaction times compared to healthy controls. Furthermore, electromyography (EMG) is an effective way to measure a subject's reaction to a perturbation. This study aims to see if MS subjects can improve their reaction times through a series of perturbation-based training visits. 18 MS patients and 11 healthy controls were recruited for this study. Each subject went through two baseline visits, six training visits, and two post-assessment visits. During each visit, subjects went through a series of forward and backward perturbations from a stand to react position administered by a dual-belt perturbation treadmill. The subjects' reaction times were measured by taking the difference between the onset of the treadmill movement and the onset of the muscle activation. This muscle activation was measured by placing EMG sensors on the tibialis anterior muscle and medial gastrocnemius muscle on each leg. After running a repeated measures ANOVA test, it was found that there were no significant differences in the reaction times between MS participants and healthy controls. However, the overall trend in the data was promising, as MS patients did improve their performance in backward-stepping slightly. Adding more participants to the study could strengthen this trend. It was also found that males across both groups significantly improved their reaction times compared to females. However, it is unknown why this occurred. Future goals would be to add more participants to the study and follow-up with MS patients to see if they have a decrease in falls post-training.
ContributorsSalek, Aydin (Author) / Peterson, Daniel (Thesis director) / Lee, Hyunglae (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
Description

Patients with Parkinson's disease have been seen to be prone to falling. Balance problems and postural instability have been seen to affect their quality of life. This project aims to understand the relationship between the presence of cognitive loads and reactive stepping performance in Parkinson’s patients. Additionally, it also tests

Patients with Parkinson's disease have been seen to be prone to falling. Balance problems and postural instability have been seen to affect their quality of life. This project aims to understand the relationship between the presence of cognitive loads and reactive stepping performance in Parkinson’s patients. Additionally, it also tests the feasibility of the experimental framework to evaluate reactive stepping performance. This experiment tested Parkinson’s patients performing tasks of varying difficulty levels while having to regain their balance. Acceleration perturbations on a treadmill were used to elicit an intrinsic response in the subjects. This compared gait parameters of the subjects that performed single and dual tasks. The results showed that the presence of a cognitive task had a negative effect on the reactive stepping performance, specifically on the margin of stability and step length. Additionally, there was no effect of changing the difficulty level of the task on reactive stepping performance.

ContributorsDesai, Mugdhasrija (Author) / Lee, Hyunglae (Thesis director) / Peterson, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
Description
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects millions of individuals in the United States alone. Common symptoms of the disease are forgetfulness and memory loss. However, these AD symptoms typically appear later in life despite potential early and hidden biological changes in the brain. This preclinical stage

Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects millions of individuals in the United States alone. Common symptoms of the disease are forgetfulness and memory loss. However, these AD symptoms typically appear later in life despite potential early and hidden biological changes in the brain. This preclinical stage can began years before the onset of the typical symptoms of AD marking the need for earlier detection methods for developing therapies to slow symptom progression. Here, I have developed an initial susceptibility weighted imaging (SWI) method, a subset of magnetic resonance imaging, for the purpose of longitudinal study of AD.
ContributorsKuppravalli, Akash (Author) / Beeman, Scott (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
Description
Regenerative medicine is a critical medical field in extending and improving the quality of human life. However, many past and current regenerative medicine treatments such as the use of embryonic stem cells have been met with significant backlash due to ethical and legal concerns. Therefore, IPSCs have the capability of

Regenerative medicine is a critical medical field in extending and improving the quality of human life. However, many past and current regenerative medicine treatments such as the use of embryonic stem cells have been met with significant backlash due to ethical and legal concerns. Therefore, IPSCs have the capability of sidestepping these ethical concerns, but require a reformatting of FDA regulations and investment into research targeting the scaling of IPSCs in order for the treatment to reach its full potential.
ContributorsTran, Kyle (Author) / Martin, Thomas (Thesis director) / Becker, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
DescriptionFalling incidents in neurological populations, Multiple Sclerosis and Parkinson’s disease, remain prevalent. In this study, we investigate the effects of reactive step training on muscle latency in those with Multiple Sclerosis and Parkinson’s Disease.
ContributorsNikjou, Devin (Author) / Bowman, Sean (Co-author) / Peterson, Daniel (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
Description

With millions of people living with a disease as restraining as migraines, there are no ways to diagnose them before they occur. In this study, a migraine model using nitroglycerin is used in rats to study the awake brain activity during the migraine state. In an attempt to search for

With millions of people living with a disease as restraining as migraines, there are no ways to diagnose them before they occur. In this study, a migraine model using nitroglycerin is used in rats to study the awake brain activity during the migraine state. In an attempt to search for a biomarker for the migraine state, we found multiple deviations in EEG brain activity across different bands. Firstly, there was a clear decrease in power in the delta, beta, alpha, and theta bands. A slight increase in power in the gamma and high frequency bands was also found, which is consistent with other pain-related studies12. Additionally, we searched for a decreased pain threshold in this deviation, in which we concluded that more data analysis is needed to eliminate the multiple potential noise influxes throughout each dataset. However, with this study we did find a clear change in brain activity, but a more detailed analysis will narrow down what this change could mean and how it impacts the migraine state.

ContributorsStrambi, McKenna (Author) / Muthuswamy, Jitendran (Thesis director) / Greger, Bradley (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

The importance and prevalence of health literacy has emerged in part due to continuing changes in the delivery of health care services, creating new responsibilities for patients and their caregivers, which include finding and evaluating information, self-monitoring health status, and understanding financial constraints and obligations. Those with low health literacy

The importance and prevalence of health literacy has emerged in part due to continuing changes in the delivery of health care services, creating new responsibilities for patients and their caregivers, which include finding and evaluating information, self-monitoring health status, and understanding financial constraints and obligations. Those with low health literacy are not able to access the same healthcare benefits, nor are they able to maintain a healthier life as they are not as informed about preventative care. Spanish speakers in the U.S. are subject to these outcomes due to their low levels of health literacy, in which they ultimately experience more severe health issues, late-stage diseases, and higher disease burden. This paper is a comprehensive examination of health literacy among Spanish speakers and makes recommendations on policies that could be implemented into the U.S. healthcare system to better accommodate Spanish speakers and help improve their health literacy for the ultimate goal of improving health outcomes and access to healthcare.

ContributorsLopezlira, Ashley (Author) / Gonzalez-Estevez, Dulce (Thesis director) / Gradoville, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of auditory attention to achieve this same goal with noninvasive electroencephalographic (EEG) methods. Five human participants participated in an auditory attention task. Participants listened to a series of four syllables followed by a fifth syllable (probe syllable). Participants were instructed to indicate whether or not the probe syllable was one of the four syllables played immediately before the probe syllable. Trials of this task were separated into conditions of playing the syllables in silence (Signal) and in background noise (Signal With Noise), and both behavioral and EEG data were recorded. EEG signals were analyzed with event-related potential and time-frequency analysis methods. The behavioral data indicated that participants performed better on the task during the “Signal” condition, which aligns with the challenges demonstrated in the cocktail party effect. The EEG analysis showed that the alpha band’s (9-13 Hz) inter-trial coherence could potentially indicate characteristics of the attended speech signal. These preliminary results suggest that EEG time-frequency analysis has the potential to reveal the neural signatures of auditory attention, which may allow for the design of a noninvasive, EEG-based hearing aid.

ContributorsLaBine, Alyssa (Author) / Daliri, Ayoub (Thesis director) / Chao, Saraching (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

Phoenix Police officers are required to wear Body-Worn Cameras while out on patrol and must have the cameras turned on when interacting with the public. The Body-Worn Camera (BWC) Policy was initially established as a means of accruing evidence and increasing police accountability when in the presence of the public.

Phoenix Police officers are required to wear Body-Worn Cameras while out on patrol and must have the cameras turned on when interacting with the public. The Body-Worn Camera (BWC) Policy was initially established as a means of accruing evidence and increasing police accountability when in the presence of the public. However, BWC technology has the ability to perform many other useful functions. The information provided by the cameras could be used to reduce the paperwork done by police officers while on duty, thus allowing them to spend more time taking calls from dispatch. The versatility of the body-worn camera and its components also make it an ideal pairing for an electrocardiograph (ECG) device to aid in the health of officers and law enforcement retention.

ContributorsChacon, Elyana (Author) / Ross, Heather (Thesis director) / Scott, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05