Matching Items (12,652)
Filtering by

Clear all filters

Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Bats are a highly diverse mammal species with a dense virome and fascinating immune system. The following project utilizes metagenomics in order to identify DNA viruses present in populations of silver-haired bats and Mexican free-tailed bats from southern Arizona. A significant number of DNA viruses and novel viruses were identified

Bats are a highly diverse mammal species with a dense virome and fascinating immune system. The following project utilizes metagenomics in order to identify DNA viruses present in populations of silver-haired bats and Mexican free-tailed bats from southern Arizona. A significant number of DNA viruses and novel viruses were identified in the Cressdnaviricota phylum and Microvirdae family.

ContributorsHarding, Ciara (Author) / Varsani, Arvind (Thesis director) / Dolby, Greer (Committee member) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
Description
Scorpions are predatory arachnids that are among the most ancient terrestrial invertebrates. They are typically found residing in desert and riparian environments. Viruses associated with scorpions have been explored in the past, unveiling partial RNA virus sequences and polyomaviruses, but more research in this area is necessary. Cycloviruses are non-enveloped

Scorpions are predatory arachnids that are among the most ancient terrestrial invertebrates. They are typically found residing in desert and riparian environments. Viruses associated with scorpions have been explored in the past, unveiling partial RNA virus sequences and polyomaviruses, but more research in this area is necessary. Cycloviruses are non-enveloped viruses with circular single-stranded DNA genomes (~1.7 to 1.9 kb). Cycloviruses were initially identified in mammals and have now been detected in samples from a wide range of mammalian and insect species. Polyomaviruses are double-stranded DNA viruses (~4 to 7 kb). They are known for causing tumors in the host it infects, and have previously been identified in a diverse array of organisms, including scorpions. The objective for this study was to identify known and novel viruses in scorpions. Using high-throughput sequencing and traditional molecular techniques we determine the genome sequences of cycloviruses and polyomaviruses. Sixteen of the forty-three scorpion samples were positive for eight different species of cycloviruses. According to ICTV guidelines, seven of the eight species were novel cycloviruses which were found in bark scorpions, stripe-tailed scorpions, yellow ground scorpions, and giant hairy scorpions (Centruroides sculpturatus, Paravaejovis spinigerus, Paravaejovis confusus & Hadrurus arizonensis) from Maricopa, Pinal, and Pima county in Arizona, USA. Additionally, one previously known cyclovirus species was recovered in bark scorpions (Centruroides sculpturatus) in Pima county which had previously been documented in guano from a Mexican free-tailed bat in Arizona. There were ten scorpions out of forty-three for which we recovered polyomavirus scorpion samples that grouped into four different polyomavirus species. Polyomaviruses were only identified in bark scorpions (Centruroides sculpturatus) from Maricopa, Pinal, and Pima county. Of the polyomavirus genomes recovered three belong to previously identified scorpion polyomavirus 1 and five to scorpion polyomavirus 3, and two represent two new species named scorpion polyomavirus 4 and scorpion polyomavirus 5. The implications of the discovery of cycloviruses and polyomaviruses from this study contributes to our understanding of viral diversity associated with Scorpions.
ContributorsGomez, Magali (Author) / Neil, Julia (Co-author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2024-05
Description
Scorpions are predatory arachnids that are among the most ancient terrestrial invertebrates. They are typically found residing in desert and riparian environments. Viruses associated with scorpions have been explored in the past, unveiling partial RNA virus sequences and polyomaviruses, but more research in this area is necessary. Cycloviruses are non-enveloped

Scorpions are predatory arachnids that are among the most ancient terrestrial invertebrates. They are typically found residing in desert and riparian environments. Viruses associated with scorpions have been explored in the past, unveiling partial RNA virus sequences and polyomaviruses, but more research in this area is necessary. Cycloviruses are non-enveloped viruses with circular single-stranded DNA genomes (~1.7 to 1.9 kb). Cycloviruses were initially identified in mammals and have now been detected in samples from a wide range of mammalian and insect species. Polyomaviruses are double-stranded DNA viruses (~4 to 7 kb). They are known for causing tumors in the host it infects, and have previously been identified in a diverse array of organisms, including scorpions. The objective for this study was to identify known and novel viruses in scorpions. Using high-throughput sequencing and traditional molecular techniques we determine the genome sequences of cycloviruses and polyomaviruses. Sixteen of the forty-three scorpion samples were positive for eight different species of cycloviruses. According to ICTV guidelines, seven of the eight species were novel cycloviruses which were found in bark scorpions, stripe-tailed scorpions, yellow ground scorpions, and giant hairy scorpions (Centruroides sculpturatus, Paravaejovis spinigerus, Paravaejovis confusus & Hadrurus arizonensis) from Maricopa, Pinal, and Pima county in Arizona, USA. Additionally, one previously known cyclovirus species was recovered in bark scorpions (Centruroides sculpturatus) in Pima county which had previously been documented in guano from a Mexican free-tailed bat in Arizona. There were ten scorpions out of forty-three for which we recovered polyomavirus scorpion samples that grouped into four different polyomavirus species. Polyomaviruses were only identified in bark scorpions (Centruroides sculpturatus) from Maricopa, Pinal, and Pima county. Of the polyomavirus genomes recovered three belong to previously identified scorpion polyomavirus 1 and five to scorpion polyomavirus 3, and two represent two new species named scorpion polyomavirus 4 and scorpion polyomavirus 5. The implications of the discovery of cycloviruses and polyomaviruses from this study contributes to our understanding of viral diversity associated with Scorpions.
ContributorsNeil, Julia (Author) / Gomez, Magali (Co-author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2024-05
Description
Wild horses have roamed the Salt River in Mesa, Arizona since the early 1800s and contribute to the great diversity of the region. Conservation of the herd has been a primary focus for many years and a current focus is population stabilization, but little is known about their virome. Circoviridae,

Wild horses have roamed the Salt River in Mesa, Arizona since the early 1800s and contribute to the great diversity of the region. Conservation of the herd has been a primary focus for many years and a current focus is population stabilization, but little is known about their virome. Circoviridae, Genomoviridae, and Smacoviridae are the three Cressdnaviricota viruses that have been identified in horses to date. Smacoviridae is classified by the rolling circle replication-associated proteins (Rep) and has a small (2.3-2.9kb), circular, single-stranded genome. The goal of this study was to identify DNA viruses within the fecal samples of the Salt River horses. Samples were collected along the lower Salt River and analyzed in the lab using a metagenomics approach. There were 422 full novel genomes of smacoviruses detected across all samples that were grouped into 144 species based on the similarity of the pairwise identity. Phylogenetic analysis shows the smacoviruses from this study fall into 3 classified genera and the rest cluster into 11 new clades. These results expand the viral diversity associated with wild horses and Smacoviridae, and further studies are needed to determine the host of these viruses.
ContributorsMcGraw, Hannah (Author) / Varsani, Arvind (Thesis director) / Murphree, Julie (Committee member) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
Description

Caracals (Caracal caracal) are a felid species native to regions of southern Africa and western and central Asia. Despite their relatively high prevalence, the majority of research conducted on caracals has been undertaken on captive individuals, which encounter significantly different environments and exhibit different behaviors in comparison to caracals in

Caracals (Caracal caracal) are a felid species native to regions of southern Africa and western and central Asia. Despite their relatively high prevalence, the majority of research conducted on caracals has been undertaken on captive individuals, which encounter significantly different environments and exhibit different behaviors in comparison to caracals in the wild. Thereby, they likely have a vastly different virome. The goal of this study was to identify known and unknown DNA viruses associated with free-ranging caracals. Caracal fecal and organ samples were obtained from a caracal surveillance study undertaken in the Western Cape region of South Africa. Parasitic ticks found feeding on caracals were also obtained. Using a viral metagenomic informed approach, a novel circovirus (family Circoviridae) was detected and characterized in caracal fecal, kidney, spleen, and liver samples, as well as in ticks feeding on the caracals. To our knowledge, this is the first circovirus identified in caracals. The novel circovirus was determined to be closely related to a canine circovirus. These findings expand the knowledge of viral diversity and caracals and are greatly important to caracal conservation efforts as well as conservation efforts of other animals within their ecosystem.

ContributorsCollins, Courtney (Author) / Varsani, Arvind (Thesis director) / Dolby, Greer (Committee member) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
Description

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a novel polyomavirus (Polyomaviridae), three cressdnaviruses, and two genomoviruses (Genomoviridae). In the short-finned pilot whale we were able to identify one genomovirus in a kidney sample. The presence of unclassified cressdnavirus within two samples (muscle and kidney) of the same animal supports the possibility these viruses might be widespread within the animal. The orca polyomavirus identified here is the first of its species and is not closely related to the only other dolphin polyomavirus previously discovered. The identification and verification of these viruses expands the current knowledge of viruses that are associated with the Delphinidae family.

ContributorsSmith, Kendal Ryan (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
ContributorsDi Russo, Michelle (Conductor) / Alpizar, Mark (Conductor) / Shaker, Shannon (Conductor) / Gupta, Kamna (Conductor) / ASU Library. Music Library (Publisher)
Created2017-11-29
ContributorsPercussion Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created2017-11-20
ContributorsSmith, J. B., 1957- (Director) / Mancuso, Simone (Director) / Contemporary Percussion Ensemble (Performer) / ASU Library. Music Library (Contributor)
Created2017-11-19