Matching Items (544)
126601-Thumbnail Image.png
Description
Day-to-day decision makers on agricultural operations play a key role in maintaining both a sustainable and food secure agricultural society. This population, also defined as Principal Producers by the 2017 USDA Agricultural Census Report, has witnessed a significant decline in recent years, raising many questions surrounding why farmers are retiring

Day-to-day decision makers on agricultural operations play a key role in maintaining both a sustainable and food secure agricultural society. This population, also defined as Principal Producers by the 2017 USDA Agricultural Census Report, has witnessed a significant decline in recent years, raising many questions surrounding why farmers are retiring faster than they can be replaced. To look closely at this phenomenon, this study focuses on the State of Ohio to hear first-hand from producers what they need to be successful through a series of semi-structured interviews. This study also maps recent changes in variables that define this issue from 2007-2017 using QGIS and USDA Agricultural Census data. The findings from this study show the recent decline of mid-sized agricultural operations and provide evidence linking declining rates of principal producer populations with specific features consistent with industrial agriculture. These findings are specific to the State of Ohio, but also raise much larger questions about which populations are experiencing more rapid rates of farm exit, and what implications these trends have for food security on a broader scale.
ContributorsMoore, Phillip (Author) / Chhetri, Nalini (Contributor) / Leonard, Bryan (Contributor) / Shrestha, Milan (Contributor)
Created2020
126670-Thumbnail Image.png
Description

Globally we are struggling to match the need for development with the available resources. Kate Raworth’s (2012) developed the idea of a “safe and just space” as a balance between the planetary boundary approach and ensuring a level of basic needs satisfaction for everyone. O’Neill et al. (2018) argue that

Globally we are struggling to match the need for development with the available resources. Kate Raworth’s (2012) developed the idea of a “safe and just space” as a balance between the planetary boundary approach and ensuring a level of basic needs satisfaction for everyone. O’Neill et al. (2018) argue that countries are currently not able to provide their populations with basic needs without concurrently exceeding planetary boundary measures. While attempts have been made to get people to change their habits through moral self-sacrifice, this has not been successful. Kate Soper (2008) argues that a change towards sustainability will only be possible if an alternative to high consumption is offered, without trade-offs in well-being. Technological improvements are often thought to end up providing solutions to the problem of overconsumption, but as Jackson (2005) shows convincingly, this is highly unlikely due to the overwhelming scale of changes required.

‘Alternative hedonism’ (Soper 2008) is a philosophical approach that has been proposed to solve this dilemma. By changing what humanity pursues to be less focused on consumption and more linked to community interaction and living healthy, fulfilling lives, we would simultaneously reduce stress on the globally limited resources and sinks. By developing and understanding satiation points – the point beyond which well-being no longer increases because of increased consumption - affluence that wastes resources without improving well-being could be reduced. This paper explores how ‘alternative hedonism’ and the development of ‘satiation points’ could be helpful in getting humanity closer to the ‘safe and just space’. The paper concludes with a discussion of some of the challenges that taking up of ‘alternative hedonism’ would entail.

ContributorsLilje, Markus (Author) / Abson, David (Contributor) / DesRoches, Tyler (Contributor) / Aggarwal, Rimjhim (Contributor)
Created2018-07-04
126671-Thumbnail Image.png
Description
Hydroelectric dams, often part of larger development programs in developing countries are characterized by conflicting interests of stakeholder groups, emblematic for the contested nature of development. Because of these different interests, stakeholders develop different evaluations of such projects, that can be understood as frames of events and projects. Frames are

Hydroelectric dams, often part of larger development programs in developing countries are characterized by conflicting interests of stakeholder groups, emblematic for the contested nature of development. Because of these different interests, stakeholders develop different evaluations of such projects, that can be understood as frames of events and projects. Frames are “the different ways of understanding or representing a system" (Leach et al. 2010 b). In this article, I analyze frames stake-holders use to convey a distinct perspective on problems, root causes, solutions, and benefits associ-ated with the hydroelectric Gibe III dam and accompanying sugarcane plantations in the Omo Valley, Ethiopia. I found that stakeholders use contrasting frames and narratives to describe the projects, but partially also propose mutual solutions. Stakeholders incorporate modernist arguments to justify their actions. Supporters and opponents address different aspects of the livelihoods of Omo valley inhabitants. By analyzing different frames and narratives, this paper contributes to opening up and broadening the debate on the development activities in the Omo valley and shows alternative pathways for sustainable development projects in Ethiopia.
ContributorsGerigk, Rebecca (Author) / Fischer, Daniel (Contributor) / Aggarwal, Rimjhim (Contributor) / Hodbod, Jennifer (Contributor)
Created2018-06-27
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
Description
Freshwater is an essential component of life for most organisms on earth. "Civilization itself is built on a foundation of water (Fagan, 2011)," as people often congregate near water sources, and find innovative solutions to exploit these resources for food production and domestic needs. Rising demand for water due to

Freshwater is an essential component of life for most organisms on earth. "Civilization itself is built on a foundation of water (Fagan, 2011)," as people often congregate near water sources, and find innovative solutions to exploit these resources for food production and domestic needs. Rising demand for water due to altered lifestyles and population increase pose further stress on water availability. Alterations and pollution of freshwater ecosystems can dramatically compromise ecological services that many species, among them humans, depend on. Arid places are specifically vulnerable in regards to water, characterized by very low levels of precipitation, as well as many dry months, which are often followed by a short time of severe storms. Considering the interconnectedness of social and ecological systems in regards to freshwater services is crucial in order to sustainably manage freshwater resources and avoid ecological crises that in turn are likely to lead to social crises around the globe (Berkes et. al., 2003).
ContributorsHenenson, Einav (Author) / Anderies, M. John (Thesis director) / Aggarwal, Rimjhim (Committee member) / Golub, Aaron (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2012-12
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsKarthikeyan, Sayish Priya (Co-author) / Ranganathan, Anirudh (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has

Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has a noteworthy corrosion resistance as it is stable when it oxidizes, and due to the inert nature of the metal, it is famously hypoallergenic and as a result used in a great deal of aviation and medical fields, including being used to produce replacement joints, with the notable limitation of the material being its cost of manufacturing. Among the variants of the metal and alloys used, Ti6Al4V alloy is famous for being the most reliable and popular combination for electron beam manufacturing(EBM) as a method of additive manufacturing. <br/>Developed by the Swedish Arcam, AB, EBM is one of the more recent methods of additive manufacturing, and is notable for its lack of waste by combining most of the material into the intended product due to its precision. This method, much like the titanium it is used to print in this case, is limited mostly by time and value of production. <br/>For this thesis, nine different simulations of a dogbone model were generated and analyzed in Ansys APDL using finite element analysis at various temperature and print conditions to create a theoretical model based on experimentally produced values.

ContributorsKauffman, Jordan Michael (Author) / Ladani, Leila (Thesis director) / Razmi, Jafar (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.

ContributorsRote, Jennifer Ashley (Co-author) / Goodall, Melody (Co-author) / Lozano Porras, Mariela (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the

As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking for help, track their impact, donate in a complete transparent donation process, and automate donations through bank card rounds-up. This social venture idea has been named PhilanthroGo.

ContributorsFrank, Gregory Keith (Co-author) / Boeh, Morgan (Co-author) / Veal, Hayley (Co-author) / Byrne, Jared (Thesis director) / Givens, Jessica (Committee member) / Satpathy, Asish (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05