Matching Items (21)
Filtering by
- Creators: Ainsworth, Barbara
- Member of: ASU Regents' Professors Open Access Works

Description
Background
African American women report insufficient physical activity and are disproportionally burdened by associated disease conditions; indicating the need for innovative approaches to promote physical activity in this underserved population. Social media platforms (i.e. Facebook) and text messaging represent potential mediums to promote physical activity. This paper reports the results of a randomized pilot trial evaluating a theory-based (Social Cognitive Theory) multi-component intervention using Facebook and text-messages to promote physical activity among African American women.
Methods
Participants (N = 29) were randomly assigned to receive one of two multi-component physical activity interventions over 8 weeks: a culturally-relevant, Social Cognitive Theory-based, intervention delivered by Facebook and text message (FI) (n = 14), or a non-culturally tailored print-based intervention (PI) (n = 15) consisting of promotion brochures mailed to their home. The primary outcome of physical activity was assessed by ActiGraph GT3X+ accelerometers. Secondary outcomes included self-reported physical activity, physical activity-related psychosocial variables, and participant satisfaction.
Results
All randomized participants (N = 29) completed the study. Accelerometer measured physical activity showed that FI participants decreased sedentary time (FI = −74 minutes/week vs. PI = +118 minute/week) and increased light intensity (FI = +95 minutes/week vs. PI = +59 minutes/week) and moderate-lifestyle intensity physical activity (FI = + 27 minutes/week vs. PI = −34 minutes/week) in comparison to PI participants (all P’s < .05). No between group differences for accelerometer measured moderate-to-vigorous intensity physical activity were observed (P > .05). Results of secondary outcomes showed that in comparison to the PI, FI participants self-reported greater increases in moderate-to-vigorous physical activity (FI = +62 minutes/week vs. PI = +6 minutes/week; P = .015) and had greater enhancements in self-regulation for physical activity (P < .001) and social support from family for physical activity (P = .044). Satisfaction with the FI was also high: 100% reported physical activity-related knowledge gains and 100% would recommend the program to a friend.
Conclusions
A culturally-relevant Facebook and text message delivered physical activity program was associated with several positive outcomes, including decreased sedentary behavior, increased light- and moderate-lifestyle intensity physical activity, enhanced psychosocial outcomes, and high participant satisfaction. Future studies with larger samples are warranted to further explore the efficacy of technology-based approaches to promote physical activity among African American women.
African American women report insufficient physical activity and are disproportionally burdened by associated disease conditions; indicating the need for innovative approaches to promote physical activity in this underserved population. Social media platforms (i.e. Facebook) and text messaging represent potential mediums to promote physical activity. This paper reports the results of a randomized pilot trial evaluating a theory-based (Social Cognitive Theory) multi-component intervention using Facebook and text-messages to promote physical activity among African American women.
Methods
Participants (N = 29) were randomly assigned to receive one of two multi-component physical activity interventions over 8 weeks: a culturally-relevant, Social Cognitive Theory-based, intervention delivered by Facebook and text message (FI) (n = 14), or a non-culturally tailored print-based intervention (PI) (n = 15) consisting of promotion brochures mailed to their home. The primary outcome of physical activity was assessed by ActiGraph GT3X+ accelerometers. Secondary outcomes included self-reported physical activity, physical activity-related psychosocial variables, and participant satisfaction.
Results
All randomized participants (N = 29) completed the study. Accelerometer measured physical activity showed that FI participants decreased sedentary time (FI = −74 minutes/week vs. PI = +118 minute/week) and increased light intensity (FI = +95 minutes/week vs. PI = +59 minutes/week) and moderate-lifestyle intensity physical activity (FI = + 27 minutes/week vs. PI = −34 minutes/week) in comparison to PI participants (all P’s < .05). No between group differences for accelerometer measured moderate-to-vigorous intensity physical activity were observed (P > .05). Results of secondary outcomes showed that in comparison to the PI, FI participants self-reported greater increases in moderate-to-vigorous physical activity (FI = +62 minutes/week vs. PI = +6 minutes/week; P = .015) and had greater enhancements in self-regulation for physical activity (P < .001) and social support from family for physical activity (P = .044). Satisfaction with the FI was also high: 100% reported physical activity-related knowledge gains and 100% would recommend the program to a friend.
Conclusions
A culturally-relevant Facebook and text message delivered physical activity program was associated with several positive outcomes, including decreased sedentary behavior, increased light- and moderate-lifestyle intensity physical activity, enhanced psychosocial outcomes, and high participant satisfaction. Future studies with larger samples are warranted to further explore the efficacy of technology-based approaches to promote physical activity among African American women.
ContributorsJoseph, Rodney (Author) / Keller, Colleen (Author) / Adams, Marc (Author) / Ainsworth, Barbara (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor)
Created2015-03-27

Description
Background
Increasing empirical evidence supports associations between neighborhood environments and physical activity. However, since most studies were conducted in a single country, particularly western countries, the generalizability of associations in an international setting is not well understood. The current study examined whether associations between perceived attributes of neighborhood environments and physical activity differed by country.
Methods
Population representative samples from 11 countries on five continents were surveyed using comparable methodologies and measurement instruments. Neighborhood environment × country interactions were tested in logistic regression models with meeting physical activity recommendations as the outcome, adjusted for demographic characteristics. Country-specific associations were reported.
Results
Significant neighborhood environment attribute × country interactions implied some differences across countries in the association of each neighborhood attribute with meeting physical activity recommendations. Across the 11 countries, land-use mix and sidewalks had the most consistent associations with physical activity. Access to public transit, bicycle facilities, and low-cost recreation facilities had some associations with physical activity, but with less consistency across countries. There was little evidence supporting the associations of residential density and crime-related safety with physical activity in most countries.
Conclusion
There is evidence of generalizability for the associations of land use mix, and presence of sidewalks with physical activity. Associations of other neighborhood characteristics with physical activity tended to differ by country. Future studies should include objective measures of neighborhood environments, compare psychometric properties of reports across countries, and use better specified models to further understand the similarities and differences in associations across countries.
Increasing empirical evidence supports associations between neighborhood environments and physical activity. However, since most studies were conducted in a single country, particularly western countries, the generalizability of associations in an international setting is not well understood. The current study examined whether associations between perceived attributes of neighborhood environments and physical activity differed by country.
Methods
Population representative samples from 11 countries on five continents were surveyed using comparable methodologies and measurement instruments. Neighborhood environment × country interactions were tested in logistic regression models with meeting physical activity recommendations as the outcome, adjusted for demographic characteristics. Country-specific associations were reported.
Results
Significant neighborhood environment attribute × country interactions implied some differences across countries in the association of each neighborhood attribute with meeting physical activity recommendations. Across the 11 countries, land-use mix and sidewalks had the most consistent associations with physical activity. Access to public transit, bicycle facilities, and low-cost recreation facilities had some associations with physical activity, but with less consistency across countries. There was little evidence supporting the associations of residential density and crime-related safety with physical activity in most countries.
Conclusion
There is evidence of generalizability for the associations of land use mix, and presence of sidewalks with physical activity. Associations of other neighborhood characteristics with physical activity tended to differ by country. Future studies should include objective measures of neighborhood environments, compare psychometric properties of reports across countries, and use better specified models to further understand the similarities and differences in associations across countries.
ContributorsDing, Ding (Author) / Adams, Marc (Author) / Sallis, James F. (Author) / Norman, Gregory J. (Author) / Hovell, Melbourn F. (Author) / Chambers, Christina D. (Author) / Hofstetter, C. Richard (Author) / Bowles, Heather R. (Author) / Hagstromer, Maria (Author) / Craig, Cora L. (Author) / Fernando Gomez, Luis (Author) / De Bourdeaudhuij, Ilse (Author) / Macfarlane, Duncan J. (Author) / Ainsworth, Barbara (Author) / Bergman, Patrick (Author) / Bull, Fiona C. (Author) / Carr, Harriette (Author) / Klasson-Heggebo, Lena (Author) / Inoue, Shigeru (Author) / Murase, Norio (Author) / Matsudo, Sandra (Author) / Matsudo, Victor (Author) / McLean, Grant (Author) / Sjostrom, Michael (Author) / Tomten, Heidi (Author) / Lefevre, Johan (Author) / Volbekiene, Vida (Author) / Bauman, Adrian E. (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-05-14

Description
Background
This study investigated the number of pedometer assessment occasions required to establish habitual physical activity in African American adults.
Methods
African American adults (mean age 59.9 ± 0.60 years; 59 % female) enrolled in the Diet and Physical Activity Substudy of the Jackson Heart Study wore Yamax pedometers during 3-day monitoring periods, assessed on two to three distinct occasions, each separated by approximately one month. The stability of pedometer measured PA was described as differences in mean steps/day across time, as intraclass correlation coefficients (ICC) by sex, age, and body mass index (BMI) category, and as percent of participants changing steps/day quartiles across time.
Results
Valid data were obtained for 270 participants on either two or three different assessment occasions. Mean steps/day were not significantly different across assessment occasions (p values > 0.456). The overall ICCs for steps/day assessed on either two or three occasions were 0.57 and 0.76, respectively. In addition, 85 % (two assessment occasions) and 76 % (three assessment occasions) of all participants remained in the same steps/day quartile or changed one quartile over time.
Conclusion
The current study shows that an overall mean steps/day estimate based on a 3-day monitoring period did not differ significantly over 4 – 6 months. The findings were robust to differences in sex, age, and BMI categories. A single 3-day monitoring period is sufficient to capture habitual physical activity in African American adults.
This study investigated the number of pedometer assessment occasions required to establish habitual physical activity in African American adults.
Methods
African American adults (mean age 59.9 ± 0.60 years; 59 % female) enrolled in the Diet and Physical Activity Substudy of the Jackson Heart Study wore Yamax pedometers during 3-day monitoring periods, assessed on two to three distinct occasions, each separated by approximately one month. The stability of pedometer measured PA was described as differences in mean steps/day across time, as intraclass correlation coefficients (ICC) by sex, age, and body mass index (BMI) category, and as percent of participants changing steps/day quartiles across time.
Results
Valid data were obtained for 270 participants on either two or three different assessment occasions. Mean steps/day were not significantly different across assessment occasions (p values > 0.456). The overall ICCs for steps/day assessed on either two or three occasions were 0.57 and 0.76, respectively. In addition, 85 % (two assessment occasions) and 76 % (three assessment occasions) of all participants remained in the same steps/day quartile or changed one quartile over time.
Conclusion
The current study shows that an overall mean steps/day estimate based on a 3-day monitoring period did not differ significantly over 4 – 6 months. The findings were robust to differences in sex, age, and BMI categories. A single 3-day monitoring period is sufficient to capture habitual physical activity in African American adults.
ContributorsNewton, Robert L. (Author) / Han, Hongmei (Author) / Dubbert, Patricia M. (Author) / Johnson, William D. (Author) / Hickson, DeMarc A. (Author) / Ainsworth, Barbara (Author) / Carithers, Teresa (Author) / Taylor, Herman (Author) / Wyatt, Sharon (Author) / Tudor-Locke, Catrine (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2012-04-18

Description
Background
Neighborhood environment studies of physical activity (PA) have been mainly single-country focused. The International Prevalence Study (IPS) presented a rare opportunity to examine neighborhood features across countries. The purpose of this analysis was to: 1) detect international neighborhood typologies based on participants’ response patterns to an environment survey and 2) to estimate associations between neighborhood environment patterns and PA.
Methods
A Latent Class Analysis (LCA) was conducted on pooled IPS adults (N=11,541) aged 18 to 64 years old (mean=37.5 ±12.8 yrs; 55.6% women) from 11 countries including Belgium, Brazil, Canada, Colombia, Hong Kong, Japan, Lithuania, New Zealand, Norway, Sweden, and the U.S. This subset used the Physical Activity Neighborhood Environment Survey (PANES) that briefly assessed 7 attributes within 10–15 minutes walk of participants’ residences, including residential density, access to shops/services, recreational facilities, public transit facilities, presence of sidewalks and bike paths, and personal safety. LCA derived meaningful subgroups from participants’ response patterns to PANES items, and participants were assigned to neighborhood types. The validated short-form International Physical Activity Questionnaire (IPAQ) measured likelihood of meeting the 150 minutes/week PA guideline. To validate derived classes, meeting the guideline either by walking or total PA was regressed on neighborhood types using a weighted generalized linear regression model, adjusting for gender, age and country.
Results
A 5-subgroup solution fitted the dataset and was interpretable. Neighborhood types were labeled, “Overall Activity Supportive (52% of sample)”, “High Walkable and Unsafe with Few Recreation Facilities (16%)”, “Safe with Active Transport Facilities (12%)”, “Transit and Shops Dense with Few Amenities (15%)”, and “Safe but Activity Unsupportive (5%)”. Country representation differed by type (e.g., U.S. disproportionally represented “Safe but Activity Unsupportive”). Compared to the Safe but Activity Unsupportive, two types showed greater odds of meeting PA guideline for walking outcome (High Walkable and Unsafe with Few Recreation Facilities, OR= 2.26 (95% CI 1.18-4.31); Overall Activity Supportive, OR= 1.90 (95% CI 1.13-3.21). Significant but smaller odds ratios were also found for total PA.
Conclusions
Meaningful neighborhood patterns generalized across countries and explained practical differences in PA. These observational results support WHO/UN recommendations for programs and policies targeted to improve features of the neighborhood environment for PA.
Neighborhood environment studies of physical activity (PA) have been mainly single-country focused. The International Prevalence Study (IPS) presented a rare opportunity to examine neighborhood features across countries. The purpose of this analysis was to: 1) detect international neighborhood typologies based on participants’ response patterns to an environment survey and 2) to estimate associations between neighborhood environment patterns and PA.
Methods
A Latent Class Analysis (LCA) was conducted on pooled IPS adults (N=11,541) aged 18 to 64 years old (mean=37.5 ±12.8 yrs; 55.6% women) from 11 countries including Belgium, Brazil, Canada, Colombia, Hong Kong, Japan, Lithuania, New Zealand, Norway, Sweden, and the U.S. This subset used the Physical Activity Neighborhood Environment Survey (PANES) that briefly assessed 7 attributes within 10–15 minutes walk of participants’ residences, including residential density, access to shops/services, recreational facilities, public transit facilities, presence of sidewalks and bike paths, and personal safety. LCA derived meaningful subgroups from participants’ response patterns to PANES items, and participants were assigned to neighborhood types. The validated short-form International Physical Activity Questionnaire (IPAQ) measured likelihood of meeting the 150 minutes/week PA guideline. To validate derived classes, meeting the guideline either by walking or total PA was regressed on neighborhood types using a weighted generalized linear regression model, adjusting for gender, age and country.
Results
A 5-subgroup solution fitted the dataset and was interpretable. Neighborhood types were labeled, “Overall Activity Supportive (52% of sample)”, “High Walkable and Unsafe with Few Recreation Facilities (16%)”, “Safe with Active Transport Facilities (12%)”, “Transit and Shops Dense with Few Amenities (15%)”, and “Safe but Activity Unsupportive (5%)”. Country representation differed by type (e.g., U.S. disproportionally represented “Safe but Activity Unsupportive”). Compared to the Safe but Activity Unsupportive, two types showed greater odds of meeting PA guideline for walking outcome (High Walkable and Unsafe with Few Recreation Facilities, OR= 2.26 (95% CI 1.18-4.31); Overall Activity Supportive, OR= 1.90 (95% CI 1.13-3.21). Significant but smaller odds ratios were also found for total PA.
Conclusions
Meaningful neighborhood patterns generalized across countries and explained practical differences in PA. These observational results support WHO/UN recommendations for programs and policies targeted to improve features of the neighborhood environment for PA.
ContributorsAdams, Marc (Author) / Ding, Ding (Author) / Sallis, James F. (Author) / Bowles, Heather R. (Author) / Ainsworth, Barbara (Author) / Bergman, Patrick (Author) / Bull, Fiona C. (Author) / Carr, Harriette (Author) / Craig, Cora L. (Author) / De Bourdeaudhuij, Ilse (Author) / Fernando Gomez, Luis (Author) / Hagstromer, Maria (Author) / Klasson-Heggebo, Lena (Author) / Inoue, Shigeru (Author) / Lefevre, Johan (Author) / Macfarlane, Duncan J. (Author) / Matsudo, Sandra (Author) / Matsudo, Victor (Author) / McLean, Grant (Author) / Murase, Norio (Author) / Sjostrom, Michael (Author) / Tomten, Heidi (Author) / Volbekiene, Vida (Author) / Bauman, Adrian (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-03-07

Description
Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
ContributorsZhang, Wenlu (Author) / Feng, Daming (Author) / Li, Rongjian (Author) / Chernikov, Andrey (Author) / Chrisochoides, Nikos (Author) / Osgood, Christopher (Author) / Konikoff, Charlotte (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ji, Shuiwang (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-12-28

Learning Sparse Representations for Fruit-Fly Gene Expression Pattern Image Annotation and Retrieval
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton School of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23

Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2013-12-03

Description
Background
“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic composition of their side chains. GRASP integrates comparative protein composition data with annotation data from multiple public databases. Currently, GRASP includes information on proteins of 12 sequenced Drosophila (fruit fly) proteomes, which will be expanded to include increasingly diverse organisms over time. In this paper we illustrate the potential of GRASP for testing stoichioproteomic hypotheses by conducting an exploratory investigation into the composition of 12 Drosophila proteomes, testing the prediction that protein atomic content is associated with species ecology and with protein expression levels.
Results
Elements varied predictably along multivariate axes. Species were broadly similar, with the D. willistoni proteome a clear outlier. As expected, individual protein atomic content within proteomes was influenced by protein function and amino acid biochemistry. Evolution in elemental composition across the phylogeny followed less predictable patterns, but was associated with broad ecological variation in diet. Using expression data available for D. melanogaster, we found evidence consistent with selection for efficient usage of elements within the proteome: as expected, nitrogen content was reduced in highly expressed proteins in most tissues, most strongly in the gut, where nutrients are assimilated, and least strongly in the germline.
Conclusions
The patterns identified here using GRASP provide a foundation on which to base future research into the evolution of atomic composition in Drosophila and other taxa.
“Stoichioproteomics” relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic composition of their side chains. GRASP integrates comparative protein composition data with annotation data from multiple public databases. Currently, GRASP includes information on proteins of 12 sequenced Drosophila (fruit fly) proteomes, which will be expanded to include increasingly diverse organisms over time. In this paper we illustrate the potential of GRASP for testing stoichioproteomic hypotheses by conducting an exploratory investigation into the composition of 12 Drosophila proteomes, testing the prediction that protein atomic content is associated with species ecology and with protein expression levels.
Results
Elements varied predictably along multivariate axes. Species were broadly similar, with the D. willistoni proteome a clear outlier. As expected, individual protein atomic content within proteomes was influenced by protein function and amino acid biochemistry. Evolution in elemental composition across the phylogeny followed less predictable patterns, but was associated with broad ecological variation in diet. Using expression data available for D. melanogaster, we found evidence consistent with selection for efficient usage of elements within the proteome: as expected, nitrogen content was reduced in highly expressed proteins in most tissues, most strongly in the gut, where nutrients are assimilated, and least strongly in the germline.
Conclusions
The patterns identified here using GRASP provide a foundation on which to base future research into the evolution of atomic composition in Drosophila and other taxa.
ContributorsGilbert, James D. J. (Author) / Acquisti, Claudia (Author) / Martinson, Holly M. (Author) / Elser, James (Author) / Kumar, Sudhir (Author) / Fagan, William F. (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-09-04

Description
Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed to wear each sensor on the non-dominant hip (ActiGraph GT3X+), wrist (GENEActiv), or upper arm (BodyMedia SenseWear Mini) for 24 h/day and record daily wake and bed times for one week over the course of three consecutive weeks. Women received feedback about their daily physical activity and sleep behaviors. Feasibility (i.e., acceptability and demand) was measured using surveys, interviews, and wear time.
Results
Women felt the GENEActiv (94.7 %) and SenseWear Mini (90.0 %) were easier to wear and preferred the placement (68.4, 80 % respectively) as compared to the ActiGraph (42.9, 47.6 % respectively). Mean wear time on valid days was similar across sensors (ActiGraph: M = 918.8 ± 115.0 min; GENEActiv: M = 949.3 ± 86.6; SenseWear: M = 928.0 ± 101.8) and well above other studies using wake time only protocols. Informational feedback was the biggest motivator, while appearance, comfort, and inconvenience were the biggest barriers to wearing sensors. Wear time was valid on 93.9 % (ActiGraph), 100 % (GENEActiv), and 95.2 % (SenseWear) of eligible days. 61.9, 95.2, and 71.4 % of participants had seven valid days of data for the ActiGraph, GENEActiv, and SenseWear, respectively.
Conclusion
Twenty-four hour monitoring over seven consecutive days is a feasible approach in middle-aged women. Researchers should consider participant acceptability and demand, in addition to validity and reliability, when choosing a wearable sensor. More research is needed across populations and study designs.
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed to wear each sensor on the non-dominant hip (ActiGraph GT3X+), wrist (GENEActiv), or upper arm (BodyMedia SenseWear Mini) for 24 h/day and record daily wake and bed times for one week over the course of three consecutive weeks. Women received feedback about their daily physical activity and sleep behaviors. Feasibility (i.e., acceptability and demand) was measured using surveys, interviews, and wear time.
Results
Women felt the GENEActiv (94.7 %) and SenseWear Mini (90.0 %) were easier to wear and preferred the placement (68.4, 80 % respectively) as compared to the ActiGraph (42.9, 47.6 % respectively). Mean wear time on valid days was similar across sensors (ActiGraph: M = 918.8 ± 115.0 min; GENEActiv: M = 949.3 ± 86.6; SenseWear: M = 928.0 ± 101.8) and well above other studies using wake time only protocols. Informational feedback was the biggest motivator, while appearance, comfort, and inconvenience were the biggest barriers to wearing sensors. Wear time was valid on 93.9 % (ActiGraph), 100 % (GENEActiv), and 95.2 % (SenseWear) of eligible days. 61.9, 95.2, and 71.4 % of participants had seven valid days of data for the ActiGraph, GENEActiv, and SenseWear, respectively.
Conclusion
Twenty-four hour monitoring over seven consecutive days is a feasible approach in middle-aged women. Researchers should consider participant acceptability and demand, in addition to validity and reliability, when choosing a wearable sensor. More research is needed across populations and study designs.
ContributorsHuberty, Jennifer (Author) / Ehlers, Diane (Author) / Kurka, Jonathan (Author) / Ainsworth, Barbara (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-07-30

Description
Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
ContributorsSchwartz, Rachel (Author) / Harkins, Kelly (Author) / Stone, Anne (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-06-11