



Diisobutylene maleic acid, or DIBMA, offers a novel approach to integral membrane protein extraction without requiring the use of detergent. This copolymer extracts the protein along with the surrounding lipids, creating native nanodiscs. This method of solubilization is the preferred method, as traditional detergent solubilization can possibly alter the structural and functional integrity of the membrane protein. DIBMA solubilization, on the other hand, is able to create a more stable environment for the integral membrane protein, while allowing purification through commonly used chromatography methods similar to established detergent solubilization protocols. In this project, we study the ability of DIBMA to isolate the integral membrane protein, chloroplast ATP synthase, without the use of detergents.


X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

